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1 Introduction

I wrote down my notes on how to obtain an Energy Spectral Density heatmap (ESD; e.g., Emery and Thomson,
2001, their §5.6.1) with time on the horizontal axis, frequency on the vertical axis, and a colorscale with units
of amplitude2 frequency−1. The latter is not always easy to obtain; many methods will produce a colorscale with
relative units (e.g., decibels) that are meaningful within a specific ESD, but not comparable from one ESD to another.

The ESD would satisfy Parseval’s theorem that relates the energy of the timeseries in the time domain to the
energy of the ESD after integrating over frequencies. Energy is here equated to the squared amplitude of the
timeseries in analogy with a simple harmonic oscillator. For a discrete timeseries yn with n = 1, . . . , N and sampling
period ∆t, Parseval’s theorem would be (Emery and Thomson, 2001, their Eq.5.6.13):

∆t

N∑︂
n=1

|yn|2 =
1

N ∆t

N−1∑︂
k=0

|Yk|2 , (1)

where Yk is the discrete Fourier transform of yn and has units of amplitude× time:

Yk = ∆t

N∑︂
n=1

yn exp (−i 2π fk n∆t) , (2)

where fk = k (N ∆t)
−1

and k = 0, . . . , N . With the Parseval theorem above, the energy of a signal y(t) = sin (2π f t)
would be proportional to its length N . It is convenient to rewrite the theorem as:
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N

N∑︂
n=1

|yn|2 =
1

N2 ∆t2

N−1∑︂
k=0

|Yk|2 , (3)

where the left-hand side is now weighted by N−1 and, in cases such as y(t) = sin (2π f t), will yield the same energy
regardless of the timeseries’ length.

2 ESD heatmaps using LTFAT

The Large Time/Frequency Analysis Toolbox (LTFAT, Průša et al., 2014; Søndergaard et al., 2012, available at
http://ltfat.github.io/) is “a Matlab/Octave toolbox for working with time-frequency analysis and synthesis”.
It is one out of multiple toolboxes with similar purposes but has the benefits of being reasonably well-documented
and easy to obtain.

LTFAT’s function sgram uses a short-time Fourier transform to compute the time-varying transform of a discrete
timeseries yn. For simplicity, we focus on a simple periodic timeseries (e.g., y(t) = sin (2π f t)) where the Fourier
transform Yk is the same at all times. One of the complication of using sgram is that the function, by default,
returns transform coefficients as a two-dimensional array (i.e., as a function of time and frequency) with the array’s
dimensions being close to 800 × 600, regardless of the sampling frequency or length of the original timeseries yn.
The rationale behind this default behavior is that the output of sgram can be readily visualized on a computer
monitor. However, in our case, some scaling becomes necessary so that the coefficients satisfy Parseval’s theorem (as
formulated in Eq. 3) and be used for a ESD with meaningful units. The rest of this document shows my notes on
how to achieve this in Matlab/Octave.
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pkg load ltfat

% Create a time-axis with N points and a sampling period delt.

% The Nyquist frequency is 1/(2 delt) and the sampling frequency is 1/delt.

npts = 300; % Length of timeseries.

delt = 0.4; % Sampling period (s).

taxi = (0 : npts - 1) * delt; % Time-axis (s).

% Create a fictional timeseries y__n representing, say, water level in meters.

% The amplitude is 2.5m and the frequency is 0.25s^(-1).

y__n = 2.5 * sin( 2. * pi * 0.25 * taxi ); % (meters).

% Compute the coefficients from the short-term Fourier transform.

% The first argument is the timeseries, the second the sampling frequency.

% The third argument indicates that we want raw coefficients on a linear scale.

% By default, sgram plots their magnitude and returns them in a matrix (coef).

coef = sgram( y__n, 1. / delt, ’lin’ );

% Scale the coefficients from sgram to obtain units of amplitude x time.

coef = coef * sqrt( 1. / (size( coef, 1 ) - 1) ) * npts * delt;

% Create time and frequency axes that match the dimensions of array coef as

% returned by function sgram. delf is the frequency stepsize corresponding

% to array coef.

t_sg = size( coef, 2 );

t_sg = (0 : t_sg - 1) / t_sg * npts * delt; % s.

f_sg = linspace( 0., 0.5 / delt, size( coef, 1 ) ); % s^(-1).

delf = f_sg(2) - f_sg(1); % s^(-1).

% Compute the energy spectral density, in units of amplitude^2 / frequency.

esde = abs( coef ).^2 / (npts * delt)^2 / delf;

figure;

colormap( inferno );

imagesc( t_sg, f_sg, esde );

axis xy;

xlabel( ’Time (s)’ );

ylabel( ’Frequency (Hz)’ );

title(’Energy spectral density’);

hand = colorbar;

title( hand, ’Ampl.^2 / Hz’ );

% Index to the midpoint of the time-axis in the array returned by sgram:

midp = round( 0.5 * size( coef, 2 ) );

disp( ’Energy from signal in time domain (ampl^2) =’ );

disp( num2str( sum( abs(y__n).^2 ) / npts ) );

disp( ’ ’ );

disp( ’Energy from signal in frequency domain (ampl^2) =’ );

disp( num2str( sum( esde(:, midp) ) * delf ) );
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3 Figures
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Figure 1: (a) Default output from LTFAT’s function sgram for the fictional timeseries yn. The vertical axis (fre-
quency) runs from zero to the Nyquist frequency. The horizontal axis covers the whole duration of the timeseries.
The colorscale is the magnitude of the Fourier transform coefficients (coef) as returned by sgram. The goal is to
scale these coefficients in such a way that their value satisfies Eq. 3. (b) Energy spectral density heatmap obtained

after scaling the coefficients and computing (N ∆t)−2 |Yk|2 /δf , where δf is the frequency interval in array Yk.
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