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Frequently Asked Questions
1. What is beom?

The Back of Envelope Ocean Model (beom) is a numerical solver for the multi-layer shallow-
water equations. It simulates rotating basins with a free surface, wetting-drying, and layered
stratification under the hydrostatic approximation. The name refers to the idealized nature
of the model equations (restricting beom to process-oriented studies) and to the streamlined
code (only ∼ 2, 000 lines of Fortran 95, distributed under a copyleft license; see §K). The
model is appropriate for computers ranging from laptops to multi-core workstations.

2. How does it relate to existing ocean models?
The basic model dynamics and numerics are similar to traditional isopycnal models such as
MICOM1 or HIM2. The model differs by the way it treats vanishing layers (wetting/drying
and isopycnal outcrops, see §C) and by its regular unstructured grid on the horizontal (ef-
ficient in sparse domains such as estuaries; §E). The former allows the model to accurately
represent large thickness gradients while preserving potential vorticity conservation (see
Salmon, 2002). The respect of conservation laws and the ability to reproduce important
analytical solutions (see the test-cases) are primary goals behind beom.

3. Why not use models that already exist?
The code is geared toward process-oriented experiments of coastal dynamics in large
(Coriolis-influenced) basins with simple (layered) stratification and complex geometries
(such as estuaries). In an ideal world, the code would feature full (unsplit, unfiltered)
barotropic-baroclinic coupling, Lagrangian (isopycnal) coordinates on the vertical, no

1The Miami Isopycnal Coordinate Ocean Model. See Bleck and Smith (1990).
2The Hallberg Isopycnal Model. See Hallberg and Rhines (1996).

numerical diffusion/dissipation, and a strict respect of conservation laws. The code would
also take advantage of multi-core commodity hardware for parallel execution (devices as
inexpensive as a Raspberry Pi already provide four computational cores.)
Existing “coastal models” such as FVCOM (Chen et al., 2007) use irregular grids whose
design requires particular care in complex domains. Computational performance and
conservation of enstrophy/energy are also problematic with irregular grids (Danilov, 2013).
At the other end of the spectrum, General Circulation Models (GCMs) focus on the larger
scales with numerical methods (regular structured grids, implicit and/or linearized free
surface, implicit vertical advection, no-slip lateral boundary conditions, no wetting/drying)
that are computationally inexpensive but unadapted for coastal regions (Ketefian and
Jacobson, 2009; Chen et al., 2007).
“beom” is somewhat of a hybrid in the sense that it combines finite-difference schemes with
a regular unstructured grid (§E) to meet (most of) its design goals, particularly in sparse
horizontal domains, with only 2,000 lines of code and no library dependency.

4. How fast is beom?
The code is optimized for domains having a sparsely-populated horizontal grid, a few layers
(say, ≤ 4), and for a multi-core workstation (4 < N < 128, N the number of cores) with
shared memory. In this niche, the code provides a highly accurate solution to the primitive
equations at a competitive cost. Outside of this niche, computational performances will
rapidly degrade from suboptimal use of memory cache, the lack of barotropic-baroclinic
splitting/filtering, and the fine-grain parallelization.

5. How do I use the model? What do I need?
All that is needed is a Fortran 95 compiler. I successfully used beom with Sun, Intel, and
GNU Fortran compilers. On my laptop I simply type:
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gfortran -O3 -fopenmp shared_mod.f95 private_mod.f95 main.f95

export OMP_NUM_THREADS=2

./a.out

. . . and the calculation starts.

The ideal way to learn about the model is to begin with the various test-cases described in
the next section. Each test-case comes with a Matlab3 script that creates all the files required
for a calculation and then plots the results. The appendices at the end of this documentation
provide additional insight on the model physics and numerics.

Note: Moderate-to-large grids may require an increase in the stack size limit (see Ap-
pendix I). Also, the Intel compiler ifort would require the flags -free -Tf for compi-
lation because it does not recognize the file extension .f95 natively (type man ifort for
additional information.)

6. Can beom be used in a global configuration?
No. The model equations are discretized using finite-differences on a C-grid of uniform
resolution (∆x = ∆y = constant). Therefore beom can only be used in a regional configu-
ration. Both periodic and non-periodic open boundaries (Flow Relaxation Scheme, Lavelle
and Thacker, 2008) are implemented.

7. Why not use a GPU rather than relying on OpenMP parallelization?
I have no experience of parallel coding over a graphics processing unit (GPU) but I can
appreciate their massive potential. Maybe one day, or maybe someone else will do it and
share their modified code.

8. Is beom funded/sponsored by an agency or institution?
beom is a personal, unfunded, late night/rainy Sunday afternoon project. I do it on my own
time, at my own pace, and for the fun of it. Feel free to use, modify and redistribute beom
under the same license (see §K).

9. How should the use of beom be acknowledged?
There isn’t a formal publication for beom because it is an implementation of various algo-
rithms that are already published. The present document is maintained in parallel with the
Fortran code and is the most appropriate reference for beom.

3A free alternative to Matlab is GNU Octave (https://www.gnu.org/software/octave). The two software share the
same syntax and thus their scripts are compatible. Octave is readily available as a package in most Linux distributions.
Alternatively, the scripts can be ported to other languages (e.g., Python) since they are fairly basic.

Figure 1: Geometry of the model in the x-z plane for a case with two layers. The figure shows a
case with outcrops (h2 has a small (but non-zero) thickness near the coasts) but no wetting-drying
(h1 ≫ 0 everywhere; see Fig. 13 for comparison). The vertical scale is exaggerated.

10. What is the status of beom?
The code has been successfully tested against a suite of test-cases for which analytical solu-
tions were available (see next section). The focus is on adding new test-cases and improving
the documentation. beom is not meant to be a ‘community code’ (à la github) because of
a lack of resources, and I do not plan to implement additional functionalities at this time,
but you are welcome to modify beom (e.g., implement a rigid lid; Zhao et al., 2019) and to
redistribute the modified code under the same license (see §K).
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Test-case 1 Stommel 1948

The first test-case is taken from the classic paper of Stommel (1948). The physics are linear (no
momentum advection) and correspond to a flat rectangular basin filled with homogeneous water.
Winds, linear bottom friction and non-uniform rotation (β-plane) are included. A Matlab/Octave
script named testcases/stommel1948.m creates the input files for the test-case and shows how
the model results compare to the analytical solutions (Fig. 2).

Test-case 2 Seaward wind & Coastal upwelling

The case of a uniform seaward wind is particularly simple as it leads to a steady 2–D solu-
tion after a transient period t ≫ f −1 (Millot and Crépon, 1981). In this test-case, the shore-
line is located at x = 0 and a uniform wind stress τx grows to 0.1 Pa over a period of 4 days.
This produces an upwelling at the western boundary (x = 0). The problem is essentially 2–D
and periodic boundary conditions are used in the longshore direction (y). For simplicity, the
eastern boundary is a solid wall where the opposite physics occurs (downwelling). See the file
testcases/upwelling_seaward_wind.m and Fig. 3.

Test-case 3 Conservation of properties

In absence of forcing and dissipation, the total mass, vorticity, potential enstrophy and energy of
a physical layer should (ideally) be conserved by the model over time (see Ketefian and Jacobson,
2009). Mass and volume conservations are interchangeable in the context of beom since we
deliberately neglect diapycnal exchanges and make the approximation of an incompressible flow
and fluid. The spatial discretization used in the code guarantees the conservation of volume and
mechanical energy in any given layer while vorticity and potential enstrophy are approximately
conserved (§E.1). Round-off errors, land boundaries (§E.3) and the time-discretization (§D) are
additional sources of errors that we will ignore for now.

The goal of the test-case is to provide some insight on the magnitude of these numerical errors.
We begin by defining the volume, potential enstrophy and vorticity of a given layer i (see §A for
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Figure 2: Sea surface elevation η1 for f = 10−11 y s−1 in the test-case of Stommel (1948).
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of quantities. The results were obtained with the ‘standard’ forward-backward scheme (§D).
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the definition of certain variables):

Vi(t) ≡
"

hi dx dy, (1)

ei(t) ≡
"

1
2

q2
i hi dx dy, (2)

ωi(t) ≡
"

ζi dx dy. (3)

The mechanical energy of the basin (K + P) is defined as:

K ≡
∑︂

i

"
1
2
ρihi

(︂
u2

i + v2
i

)︂
dx dy, (4)

P ≡

"
1
2
ρ1gη2

1 dx dy, (5)

where K is the kinetic energy and P the barotropic potential energy (the energy contained in the
baroclinic mode is neglected for simplicity). I further define the area-averaged volume anomaly,
potential enstrophy anomaly and vorticity anomaly:

A−1V ′i (t) ≡ A−1
"
|hi − hi(x, y, t = 0)| dx dy, (6)

A−1e′i(t) ≡ A−1
" ⃓⃓⃓⃓⃓

1
2

q2
i hi −

1
2

q2
i (x, y, t = 0) hi(x, y, t = 0)

⃓⃓⃓⃓⃓
dx dy, (7)

A−1ω′i(t) ≡ A−1
"
|ωi| dx dy. (8)

where A =
!

dx dy is the area of the model domain. These anomalies are meant to represent a
typical fluctuation from the initial model state over the course of the calculation. We can think of
these anomalies as the ‘signal’ that we try to simulate, while round-off and discretization errors
represent a background noise. The accuracy of the model can be gauged by the signal-to-noise
ratio.

The test-case described in the file testcases/conservation.m represents a semi-realistic
scenario where round-off and discretization errors are tracked during the collapse of a Gaussian-
shaped mound of water. The basin is double-periodic, it has a two-layer stratification and a
seamount at its center. The vertical stratification is sufficiently strong that the baroclinic Rossby
radius of deformation is resolved with a coarse mesh of 10 km. The basin is initially at rest and
the collapse of the surface mound excites several normal modes of the basin (e.g., Rao, 1966).
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For the purpose of this test-case, the integration time is limited to 50 days. The model runs with
no explicit dissipation, no forcing, and the energy-conserving ‘standard’ forward-backward time-
discretization (g_fb = 0. in file shared_mod.f95; see §D). The values (and figures) reported
below are obtained with the parameter rw set to r4 (see §B.1).

The average layer thickness (i.e. the volume of the layer normalized by the area of the basin)
oscillates and stays within ±5 × 10−10 m of its initial value during the 50 days of simulation
(Fig. 4a). This numerical error is eight orders of magnitude smaller than the ‘signal’, i.e. the
typical fluctuations in the thickness of the layer (O

(︂
10−2 m

)︂
, Fig. 4b). The mechanical energy

(K+P) displays oscillations O(3%) (Fig. 4c). These oscillations are primarily due to the time dis-
cretization and their magnitude would decrease if the time-step ∆t were reduced (§D). If the ‘gen-
eralized’ forward-backward scheme is used instead of the ‘standard’ forward-backward scheme,
the high-frequency wave motion is gradually damped (e-folding time of 75 days). This numerical
dissipation is inherent to the generalized scheme and is exacerbated by the coarse resolution of
the test-case and the dominance of divergent motion (see §D).

The potential enstrophy oscillates around its initial value with an amplitude O(10−16 m−1 s−2)
(Fig. 5a). This numerical error is two orders of magnitude smaller than the typical oscillation
resolved by the model (Fig. 5b). The numerical error for the vorticity (Fig. 5c) is five orders of
magnitude smaller than the typical variations resolved by the model (Fig. 5d).

Test-case 4 Wave sponge at model boundaries
Open boundaries are special boundaries through which signals generated inside the model domain
can propagate freely, as if the domain would extend to infinity. The open boundary scheme
implemented in beom is called the flow relaxation scheme (Davies, 1976). In this approach,
outward-propagating signals such as waves are gradually absorbed within special regions of the
model domain called ‘sponge zones’. The sponge is typically implemented as an additional term
on the right hand side of the prognostic equations (we consider a one-dimensional space for
simplicity):

∂ϕ

∂t
= ... +

ϕext − ϕ

Trelax
, (9)

where ϕ(x, t) is a prognostic variable, ϕext its (estimated) value outside of the model domain,
and Trelax(x) a timescale for the relaxation. Prognostic variables are not conserved within the
sponge zones because of this additional term. The choice of the variables to be relaxed, and the
shape of Trelax(x) within the sponge zone, are active topics of research (see Lavelle and Thacker,
2008, for a review) and they depend on the problem at hand. In the case of a mean flow in near
geostrophic balance and no waves, a simple ‘no-gradient’ boundary condition with very weak
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Figure 6: Absorption of the outward-propagating wavefront by the sponge zones. The residual en-
ergy corresponds to the small geostrophically-balanced mound (e.g., Lavelle and Thacker, 2008,
their Fig. 3). See Test-case 4 (Wave sponge at model boundaries).
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relaxation (Trelax ≥ month) is often acceptable (e.g., Williams et al., 2001). A more general case
that includes large barotropic waves generated inside the domain will require a strong sponge at
at least one of the open boundaries (Trelax → ∆x/cext, where cext is the phase speed of the waves).

In this test-case I revisit the collapse of the Gaussian-shaped mound of water (Test-case 3) by
replacing the periodic boundaries with sponge zones that completely surround the domain4. The
wavefront gradually propagates outward and is ultimately absorbed within the sponge zones. The
final state in the interior domain is an ocean at rest except for a weak geostrophically-balanced
gyre where the mound was located. Following Lavelle and Thacker (2008), all prognostic vari-
ables are relaxed within the sponge zones except tangential velocities. Modave et al. (2010)
suggest a sponge zone with a width of n ∼ 15 grid points in which the inverse of the relaxation
timescale (T−1

relax) varies as (their Eq. 29):

T−1
relax(i) =

cext

n∆l
i

n − i
, (10)

where cext is the phase speed of surface gravity waves, ∆l is the mesh size, and i is the position
within the sponge zone in unit of grid points. The file testcases/wave_sponge.m creates the
input files and illustrates the efficiency of the sponge (Fig. 6).

Although the present test-case is entirely focused on the absorption of outward-propagating
waves, the same mechanics (Eq. 9) can be used to prescribe a signal to be advected into the
model domain (see, for example, Test-cases 7,11,12). I use the general term “nudging zone”
(also known as ‘relaxation zone’ or ‘buffer zone’) to describe a zone where Eq. 9 is implemented
for either purpose (absorption of outward signals or prescription of inward signals). beom iden-
tifies the presence and location of nudged open boundary segments by looking for grid cells
satisfying three conditions: (1) a T−1

relax(x, y) field is provided as input to the calculation (see the
file testcases/wave_sponge.m for an example), (2) the grid cell is associated with a value
T−1

relax(x, y) > 0, (3) the grid cell has a bottom depth > 0 while its neighboring grid cell has a depth
= 0 (boundary of computational domain). This set of conditions allows for defining an arbitrary
number of nudged open boundaries that can be positioned anywhere (not necessarily at the edges
of the model domain).

Test-case 5 Equatorial soliton
The Equatorial soliton is a solitary wave that propagates westward at fixed speed along the Equa-
tor. The wave depends on non-linearities to preserve its shape and so this test-case is often used to

4In more realistic model domains, it is often sufficient to have a wave sponge along only one segment of the
domain’s boundaries; see Test-case #11.
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evaluate ocean models. The model domain corresponds to a periodic zonal channel on a β-plane
and it is initialized with analytical fields for η, u, v (Lavelle and Thacker, 2008, their Eqs. 21–23).

The model is integrated for two months during which the soliton travels the whole channel
and returns to its initial position. The file testcases/soliton.m creates the input files and
compares the wave at initial and final times (Fig. 7). The test-case does not require any dissipa-
tion if the ‘generalized’ forward-backward scheme is used (dvis = 0. and g_fb = 1. in file
shared_mod.f95; see §D). The ‘standard’ forward-backward scheme cannot handle the test-case
unless a strong dynamic viscosity is introduced (dvis=1.).

Test-case 6 Barotropic instability and 2–D turbulence

The test-case testcases/unstable_jet.m considers the case of two zonal jets flowing in op-
posite directions and initially in geostrophic balance with a Gaussian-shaped ridge of water along
x. The large relative vorticity of the jets makes them dynamically unstable. A perturbation corre-
sponding to sinusoidal corrugations at the bottom is used to trigger the growth of the wave. The
domain is a double-periodic rectangle with uniform planetary rotation.

The two jets start to meander after O(1 day) and rapidly evolve into two-dimensional turbulence
(Fig. 8). The test-case checks that the periodic boundary conditions, momentum advection, and
non-linear viscosity are properly working.

Test-case 7 Stratified rotating flow over topography

Baines and Leonard (1989) provide an analytical solution for the case of a stratified (1-1
2 layer)

rotating flow over a small semi-infinite ridge. Their analytical solution corresponds to the steady
state (valid for times t ≫ f −1) and is analog to the atmospheric flow that develops above a moun-
tain range. They neglect vertical shear and assume that both layers share the same initial speed
U0. The analytical solution neglects derivatives in the cross-stream direction (y) and assumes that
u · ∇u can be linearized as U0 ∂u/∂x.

The file testcases/baines_ridge.m reproduces the setup of Baines by prescribing a two-
layer flow along x with periodic conditions along y. The 1- 1

2 layer dynamics are mimicked by
having the upper layer 10 times thicker than the lower layer. The height of the ridge is 1/10 of the
lower layer thickness since the analytical solution is only valid for small topography. Sponges are
placed upstream and downstream of the ridge to absorb the waves produced during the transient
adjustment. The Coriolis term qe3 × h u is balanced by a constant and uniform body force applied
in the cross-stream (y) direction. Fig. 9 compares the analytical and modeled interface for U0 =
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1.2 m s−1 and ∆ρ = 5 kg m−3 (corresponding to a Froude number F0 = 1.7) after 10 days of
simulation.

Test-case 8 Isopycnal outcropping
An isopycnal surface becomes discontinuous (undefined) wherever it intersects the sea floor, the
sea surface, or another isopycnal. Bretherton (1966) interprets such discontinuities as the layer
being still active but infinitesimaly thin (a δ-sheet). The same concept is referred to as ‘mass-less
layers’ by Hsu and Arakawa (1990). From a modelling point of view, the difficulty is exchanged
from handling spatial discontinuities to handling very thin thickness values (see §C).

The test-case testcases/outcrop_seamount.m considers the case of a closed square basin
with sloping walls and a seamount at its center (Fig. 10). The model starts from rest and has
five layers that intersect both the seamount and the sloping walls. The test-case verifies that the
numerical scheme (§C) is stable despite the steep isopycnal slopes, i.e. that it does not generate
artificial currents that grow over time. Such test-case is commonly used to evaluate pressure-
gradient errors in σ-coordinate models.

The test-case is an example of simple isopycnal outcropping with no wetting-drying (“inun-
dation”). These two concepts are compared in Fig. 11. In simple isopycnal outcropping, the
shoreline corresponds to a vertical wall and the minimum depth of the basin is such that the upper
layer thickness h1 is always ≫ hsal. Here hsal is the ‘Salmon thickness’, a problem-dependent
parameter to be determined by the user prior to a calculation (see §C). For example in Fig. 11a
the minimum depth of the basin is set to:

H(i = 1) = 10 hsal + (N − 1) hsal, (11)

where (N − 1) hsal was included to take into account the vertical space occupied by layers 2–4
(outcropped layers have a thickness h ∼ hsal). In cases with wetting-drying there is no restriction
on the minimum depth of the basin (Fig. 11b).

The Salmon thickness essentially determines the thickness of the outcropped layers. The choice
of hsal depends on the horizontal mesh size, the topographic slope and the stratification. In cases
with wetting-drying (Fig. 11b), Salmon suggests (Salmon, 2002, page 625):

hsal >

⃓⃓⃓⃓⃓
∂H
∂x

⃓⃓⃓⃓⃓
∆x, (12)

where |∂H/∂x| is the bottom slope (Fig. 11b). Equation 12 ensures that the dynamical balance of
the top layer changes smoothly from ‘wet’ to ‘dry’ grid points. Salmon shows that violating this
criterion leads to solutions that are increasingly noisy as hsal is reduced.
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In cases with simple outcropping, Eq. 42 becomes (assuming a two-layer stratification for sim-
plicity) in the bottom layer:

−
ρ2 − ρ1

ρ2

(︂
H(x, y) − h0

2(x, y)
)︂
−

hsal

3

(︄
hsal

h0
2(x, y)

)︄3

= C2, (13)

which is the same equation that led Salmon to his criterion (Eq. 12) except for the density factor.
The latter allows for considerably thinner values (Fig. 11a):

hsal > max
⃓⃓⃓⃓⃓
∂H
∂x

⃓⃓⃓⃓⃓
∆x
∆ρ

ρ
, (14)

where max |∂H/∂x| is the maximum bottom slope over the model domain and ∆ρ is a value rep-
resentative of the density stratification.

Equations 12,14 are only rules of thumb grounded on the idea that the dynamical balance (and
the relative importance of Salmon’s term within the “pressure gradient”, see Eq. 45) shouldn’t
change too abruptly from one grid cell to the next. They can be used as an initial guess for
hsal, but this guess should be validated by running the configuration under its state of rest (no
forcing, no dissipation) and by verifying that spurious currents are negligible and not growing over
time (see next paragraph). Growing currents would indicate that hsal should be increased. Given
that Eqs. 12–14 both involve topographic slopes, users of realistic bathymetries can avoid trouble
by slightly smoothing the interpolated bathymetric grid so that excessively abrupt transitions in
dynamical balance are avoided.

In test-case testcases/outcrop_seamount.m the Salmon thickness is set to hsal =

max |∂H/∂x|∆x (ρ2 − ρ1)/ρ2 = 14 cm and the layers are a few cm thick in the areas of outcrop
(Fig. 10). The maximum spurious currents are O(10−5 m s−1) and the potential enstrophy of the
layers is constant (within machine precision). The kinetic energy of the model domain remains
stable over the 15 days of simulation without any recourse to dissipation (the viscosity parameters
bvis and dvis are zero). Note that Eq. 14 represents a lower bound on hsal and that more realis-
tic settings (that include vigorous flows and/or poorly resolved topography) may require thicker
values. The user is expected to test the sensitivity of their results to this important parameter.

Test-case 9 Coastal upwelling with outcrop
Morel et al. (2006) provide an analytical solution for a coastal upwelling where the pycnocline
outcrops the sea surface. Their setup is a flat basin with a rigid lid, a two-layer stratification, and a
constant and uniform longshore wind applied impulsively at t = 0. Derivatives in the along-shore
direction are assumed zero and non-linear terms are neglected.
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The file testcases/morel_upwelling.m reproduces the setup of Morel et al. (2006) as
closely as possible. The wind forcing is mimicked with a constant body force applied on the
upper layer (both before and after the pycnocline reaches the surface). No force is applied to the
lower layer (see their Eq. 25). One grid point and periodic conditions are used in the along-shore
direction (x). The offshore boundary condition is a solid wall located one barotropic Rossby
radius away from the upwelling.

The position y of the model ‘front’ (i.e. where the interface intersects the surface) closely
follows the theory (Fig. 12). Differences between the two are essentially due to the rigid lid
approximation (the surface slopes downward in both model and reality) and to the finite value of
hsal (0.5 m). This model-theory comparison illustrates the accuracy and robustness of the scheme.

It is instructive to examine the dynamical balance within the outcropped areas (i.e. in the upper
layer and shoreward of the front). With the periodic condition in the alongshore direction, the
depth-integrated longshore momentum equation reduces to:

h
∂u
∂t
≈ h f v + h bx, (15)

where bx represents the ‘wind stress’ (here a constant and uniform body force). In the across-shore
direction the momentum equation is:

h
∂v
∂t
≈ 0 ≈ −h f u − h g

∂η1

∂y
− h

∂

∂y
(M − gη1) , (16)

where M − gη1 represents the artificial term suggested by Salmon (see Eq. 45). Outside the out-
crop area the dynamical balance is essentially geostrophic (Fig. 12). Within the outcrop area, the
surface becomes flat (∂η1/dy → 0, green curve) and geostrophic velocities f ∂η1/dy vanish. The
actual longshore transport h u is also close to zero (blue curve) and balanced by a smooth and
weak Salmon term (red curve).

Test-case 10 Wetting and Drying
An important application of Salmon’s method (§C) are cases where the land/ocean boundary is
free to move horizontally (‘wetting and drying’). In order to accommodate such a displacement of
the shoreline, the model domain must be extended horizontally and vertically to include the land
areas that will be potentially flooded (Figs. 11,13). In a realistic case, one would use a topographic
database that includes both the water depth and the land elevation. Then, we define a maximum
value for the height of the flood (in the tidal literature this would correspond to the ‘Highest High
Tide’, hhti). The model domain is then extended to include all the land areas whose elevation

Mean Sea Level

Figure 13: Basin configuration in cases with wetting-drying. Scales are exaggerated. The figure
shows a case with no stratification for simplicity.

is ≤ hhti. Finally, the top of the upper model layer (topl(1)) is lowered to coincide with the
mean sea level (Fig. 13). The model shoreline corresponds to the point where the layer thickness
falls below the Salmon thickness hsal (§C).

The file testcases/carrier_beach.m provides an example of ‘wetting and drying’. In con-
trast with all the earlier test-cases, the undisturbed sea surface ssh0(x) does not coincide with the
geopotential surface z = 0 (Figs. 11,13):

ssh0(x) ≡
nlay∑︂
i=1

h0
i (x) − H(x) ≈

{︄
−hhti away from coastlines,
−H(x) + hsal over ‘dry’ areas, (17)

and the top of the (undisturbed) upper layer is positioned at topl(1) = hhti/Hmax. In this case
hhti = 0.9 meters.
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Carrier and Greenspan (1958) provide an analytical solution for the initial-value problem of a
mound of water released in front of the shoreline (Fig. 14a). The mound has an initial height of
30 cm and the bottom has a gentle slope of |∂H/∂x| = 10−3. The Salmon thickness is set to a very
small value hsal = 0.2 |∂H/∂x|∆x = 1.2 cm (see Eq. 12) and the model is ran with no dissipation
at all. The mound collapses without breaking and forces the shoreline to migrate horizontally and
vertically along the sloping beach. Waves radiated seaward are absorbed within a wave sponge.
Fig. 14b shows that the model accurately reproduces the oscillation of the shoreline.

Test-case 11 Upwelling with mixed open boundary conditions

In this test-case we consider a rectangular domain with a straight coastline on one side and open
boundaries on the three other sides. An ideal open boundary condition (obc) would simultane-
ously allow: (1) the propagation of outgoing perturbations (waves, drifting eddies) and (2) the
prescription of a given field (velocity, stratification, sea surface height). This dual requirement
is often referred to as a passive-active obc (e.g., Palma and Matano, 1998; Marchesiello et al.,
2001).

The test-case combines different types of obc at the edges of the model domain to fulfill the
two requirements (see the file testcases/mixed_open_bc.m). The first obc is a ‘no-gradient’
condition;

∂ψ

∂x
= 0, (18)

where x is the direction normal to the boundary and ψ represents the layers’ thickness h and
the two velocity components u, v. This obc is simply an extrapolation of the solution calculated
inside the computational domain. It allows for the development of a geostrophic flow normal to
the open boundary (Chapman, 1985). Its main drawback is that it reflects outgoing waves. In
beom, the ‘no-gradient’ obc is applied by default at all open boundaries that are not periodic (see
the discussion of Test-case 4 on how beom identifies the existence and location of non-periodic
open boundaries).

The default behavior of the model is to always complement the ‘no-gradient’ obc with a relax-
ation of the type:

∂ψ

∂t
= . . . +

ψext − ψ

Trelax
, (19)

where . . . represents the right hand side of the prognostic equations, Trelax is the relaxation time-
scale, and ψext is a prescribed state (sometimes called the external field). In the test-case this
prescribed state is simply the state of rest to which the model automatically adds an Ekman

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-20 -15 -10 -5 0

V
e

rt
ic

a
l 
d

is
p

la
c
e

m
e

n
t 

(m
e

te
rs

)

Distance from shoreline (km)

Wave at t = 0 hours

Sloping beach
Mean sea level

Sea surface

-300

-200

-100

0

100

200

300

400

500

0 0.5 1 1.5 2

H
o

ri
z
o

n
ta

l 
d

is
p

la
c
e

m
e

n
t 

(m
e

te
rs

)

Time (hours)

Shoreline (theory)
Shoreline (model)

a)

b)
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component in the upper layer (i = 1):

ψext : ηi = 0, u1 = −e3 ×
τwind

f ρ0 h1
, u2 = 0. (20)

The Ekman component ensures that wind-induced currents are free to flow across the open bound-
aries. The relaxation time-scale is set to a relatively long period at the northern and southern open
boundaries (Trelax ∼ 1 month) and its role is to prevent model drifts during long integrations.

The same configuration (‘no-gradient’ + relaxation) is applied at the offshore open boundary
but with time-scales Trelax that are much shorter. The strong relaxation acts as a sponge and
represents the main outlet for any wave that would be generated within the domain (see Test-
case 4).

The test-case testcases/mixed_open_bc.m is similar to Test-case 2 except that the model
domain is now three-dimensional and that non-periodic obc are used. The test-case verifies that
the 3–D configuration with mixed obc (Eqs. 18,19,20) converges toward the same solution as the
2–D periodic case.

Test-case 12 Tidal flow over a ridge
The test-case testcases/tide_ridge.m simulates a tidal stream over a Gaussian ridge. The
ridge has a height of 0.75 Hmax and blocks the lower two layers. The stratification is represented by
seven layers concentrated in the upper part of the water column. The domain is two-dimensional
with a mesh size dx = 100 m and no rotation ( f = 0).

The tidal forcing consists of an oscillating barotropic flow of the form:

utide = u0 cos (ϕu − ωt) , vtide = v0 cos (ϕv − ωt) , ηtide
1 = η0 cos

(︂
ϕη − ωt

)︂
, (21)

where u0 = 10 cm s−1, ϕu = π/2, ω = 12.141 rad days−1, and v0 = η0 = 0. The forcing is applied
with nudging at two open boundaries located on both sides of the ridge.

The oscillating flow and the stratification produce internal waves that radiate away from the
ridge. The interface displacement associated with the waves is a few meters.

Test-case 13 Lock-exchange experiment
The test-case testcases/lock_exchange.m simulates the gravitational adjustment of two flu-
ids initially separated by the center in a closed rectangular reservoir. The experiment is some-
times referred to as a ‘dam break’. The density contrast between the two fluids forces a slow
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re-distribution and a transient oscillation with a fixed period. The initial density front propagates
outward with a velocity of (e.g., Ilıcak et al., 2012):

1
2

√︁
g H ∆ρ/ρ0 (22)

where H is the reservoir depth and ∆ρ is the density contrast between the two fluids/layers. Fig-
ure 16 shows the position of the interface after 17 hours. The figure can be compared to the
corresponding experiment in Shchepetkin (2015).

Test-case 14 Remotely-forced current
The script testcases/remote_current.m can be used as a starting point for a generic three-
dimensional regional continental shelf/slope domain with a slope current (or a coastal current)
having specific characteristics. The current is assumed to be remotely-forced, i.e., generated
outside of this regional model domain, by larger-scale forcings (e.g., Antarctic westerlies) not
represented here. The domain is a f -plane in the Southern Hemisphere ( f = constant < 0) and
has no topography (for the sake of simplicity). The domain is open on all four sides with the
remote current (RC) flowing to the left (“westward”, u < 0). The characteristics of the RC are
prescribed (and maintained over time) at the upstream boundary (eastern side).

To minimize the computational cost of the test-case, the bottom depth is set to an unusu-
ally shallow value (H = 10 m) and the stratification is unusually strong (two layers with
∆ρ = 30 kg m−3). The current in the top layer is parameterized as:

u1(y) = −umax exp
(︄
−

1
2

y2

(γ LR)2

)︄
, (23)

where umax and γ define the speed and width of the RC (respectively). The current is assumed to
be barotropic (u2 = u1, η2 = 0, v1 = v2 = 0) and in geostrophic balance with a tilted free surface:

u1 = −g f −1∂η1/∂y. (24)

This configuration is used as the initial condition and also the condition toward which the model
fields are relaxed inside the nudging zones.

The script defines the relaxation/nudging applied to the model variables (η, u, v) at the four open
boundaries. At the southern and western sides, a weak relaxation (timescale Trelax ≈ O(1 month))
is applied on all three variables and this relaxation decreases linearly away from the boundary
over a distance of 15 grid points. The purpose of the weak relaxation is to prevent the model
variables from drifting over time.
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At the eastern side (x = Lx), the same weak relaxation is applied everywhere except within the
RC. There, the relaxation is strenghtened to:

Trelax(x = Lx, y) ≈ ∆t
|u1(y)|
umax

, (25)

where ∆t is the model time-step. The stronger relaxation ensures that the characteristics of the
RC are faithfully reproduced and maintained over time. The relaxation decreases away from the
boundary as in Eq. 10. Finally, a wave sponge (see test-case #4) is applied at the northern side so
that a gravity wave produced during the simulation can safely leave the domain.

The key feature apparent in the first days of simulation is the current adjusting itself from
a strict geostrophic balance at the upstream boundary (η2 = 0 and Eq. 24) to a more realistic
universe that includes ageostrophic terms (notably a small viscosity µ ≠ 0). The adjustment is
small (deviations in η2 are O(1 cm)) but generates gravity waves that eventually disappear through
the wave sponge at the northern boundary. The adjustment process is also accompanied by the
formation of vortices within the current after day 20. The vortices travel westward with the current
and disappear through the western boundary around day 70. After approximately 100 days, the
domain reaches a quasi-steady state where the RC maintains its characteristics indefinitely with
minor deviations from the state prescribed at the upstream boundary. Note that the test-case is set
for a duration of only 10 days in its default configuration (dt_s=10.).

Test-case 15 Locally-forced slope current
The script testcases/easterlies_current.m can be used as a starting point for a generic
regional continental shelf/slope domain with a flow driven by the local winds (in contrast with
test-case #14). The setup of the test-case is similar to that of Stewart and Thompson (2012) but
with major simplifications (described below). The domain is a f -plane in the Southern Hemi-
sphere ( f = constant < 0) and uses a hyperbolic tangent function to mimic the cross-shelf
bathymetry. The domain is periodic in the along-slope direction, closed at the onshelf (southern)
boundary, and includes a wave sponge (see test-case #4) at the offshelf (northern) boundary. The
sole forcing is a time-invariant zonal wind stress applied over the model domain (Fig. 17a) mim-
icking the strong westerlies offshore (τx > 0) and the comparatively weaker Antarctic easterlies
over the continental slope (τx < 0). A weak linear bottom friction (1.1×10−3 m s−1) is the primary
mechanism for the dissipation of kinetic energy. The test-case assumes a very weak background
stratification with a potential density profile of the form:

ρ(z) = ρbottom − ∆ρ exp(z/Hstrat), (26)

where z is positive upward, ρbottom = 1027 kg m−3 would be the density at the ocean’s bottom,
Hstrat = 1000 m is a e-folding scale for this exponential profile, and ∆ρ = 1 kg m−3 is the assumed
density contrast between the surface and the bottom. This continuous density profile is then
discretized over six layers each representing a density class of width ∆ρ/6. With this choice,
the thickness of the layers in their state of rest varies between 183 m and 1208 m (Fig. 17c). To
minimize the computational cost of the test-case, the domain is limited to one grid point in the
zonal dimension (lm=1) which makes it a 2.5-D domain (the 1

2 refers to the fact that non-zero
velocities along the missing dimension (x) are allowed, i.e. u ≠ 0). Additional simplifications
from the setup of Stewart and Thompson (2012) include the absence of ∂ f /∂y, surface heat fluxes,
or dense water formation on the shelf.

The test-case is initiated from rest and the wind forcing is gradually introduced (“ramped”)
over a period of one day (dt_r=1.) to minimize the formation of inertial waves (e.g., Millot and
Crépon, 1981). Over the following days, the wind stress accelerates the upper layers and produces
a surface-intensified eastward current at y = 1400 km (“Antarctic Circumpolar Current”, ACC)
and a surface-intensified westward current at y = 500 km (“Antarctic Slope Current”, ASC;
see Fig. 17c). Simultaneously, Ekman pumping generated by ∂τx/∂y leads to upward/downward
transport and a corresponding vertical displacement of the isopycnals (Fig. 17a,c). The upward
and downward displacements on the two sides of the ACC are roughly symmetrical (i.e. similar
in magnitude but of opposite sign). In contrast, the presence of the continental slope strongly
enhances the downward displacement of isopycnals on the southern side of the ASC. Note that
the layers’ interface at y = 0 km and at y = 2000 km are mostly undisturbed (i.e. they remain at
their initial depth) which is consistent with the lack of wind forcing (τx → 0) at these locations.

The sea surface elevation reaches a quasi-stationary state after approximately 750 days, con-
sisting of a northward slope within the ACC and a steep gradient within the ASC (Fig. 17b). (Note
that the default duration of the test-case is only 20 days; dt_s=20.). On the other hand, the baro-
clinic field does not show sign of reaching a stationary state as the isopycnals become steeper and
steeper over time (and start to outcrop at the surface; see layer 1 in Fig. 17c) in response to Ekman
pumping. This unrealistic runaway behavior is a consequence of the 2.5-D approximation (lm=1)
that inhibits the mechanism through which the ocean normally releases its potential energy: baro-
clinic instability and the formation of mesoscale vortices (“eddies”). Eddies play an essential role
in the 3-D setup of Stewart and Thompson (2012) and in more realistic models of the ACC that
include the oceanic ridges (Ward and Hogg, 2011). These essential processes can be activated by
simply increasing the value of lm inside testcases/easterlies_current.m and re-running
the test-case (albeit at a much higher computational cost).
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Figure 17: Test-case for a locally-forced slope current. (a) Constant wind stress forcing applied
on the model domain, with black arrows representing upward/downward Ekman pumping. (b)
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Figure 18: Test-case for dense water overflow on a continental slope (test-case 16).

Test-case 16 Dense water overflow

The test-case is from Ilıcak et al. (2012) and represents a cascade of dense water in a non-rotating
( f = 0), 2-D (x-z) shelf-slope system with no transverse velocities (v = 0). The topography
consists of a 500 m deep continental shelf, a 2000 m deep abyssal plain, and a continental slope
with maximum slope of 11% (Fig. 18). The initial condition has the water at rest (u = v = 0)
and homogeneous water everywhere (ρ = ρ1 = 1028 kg m−3) except for a ‘reservoir’ of denser
water (ρ2 = 1030 kg m−3) occupying most of the continental shelf. The interface separating
the two layers is initially vertical and thus defines a ‘lock-exchange’ experiment with a non-flat
topography. No analytical solution are available for this test-case.

For this test-case, the top of layer 2 at the deepest location of the model domain (array topl
in shared_mod.f95) is positioned one Salmon’s thickness (hsal) above the seabed. Therefore,
layer 2 is initially “absent” from the abyssal plain and continental slope. On the continental shelf,
the top of layer 2 is positioned 5 hsal away from the surface, leaving enough room for layer 1
that Salmon’s artificial term is dynamically inactive on the continental shelf, and thus it doesn’t
influence the speed at which layer 2 is being drained out of the shelf. This configuration mimics
the initial condition of Ilıcak et al. (2012).

After the calculation begins, layer 2 reaches the shelf break within a few hours and forms a
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cascade down the slope. As pointed out by Haidvogel and Beckmann (1999) regarding a similar
model configuration, the vertical velocities within the cascade are such that the dynamics are
fundamentally non-hydrostatic and lie outside of beom’s domain of validity. Nevertheless, the
cascade proceeds until the ‘reservoir’ on the shelf is emptied and all of layer 2 has reached the
abyssal plain (dt_o is set to one day in the test-case). The cascading dense water forms bores
when it reaches the flat abyssal plain, qualitatively similar to descriptions by Ilıcak et al. (2012)
and Haidvogel and Beckmann (1999). The test-case includes a nudging zone at the end of the
abyssal plain to allow the dense water to exit the domain gracefully.

The test-case doesn’t play to the strengths of Salmon’s approach. The code requires an unusu-
ally thick Salmon’s thickness (hsal = 10.3 m, considerably thicker than the rule of thumb (Eq. 14)
would suggest) in order to survive the cascading dense water. Although 10.3 m is equivalent to
only 0.5% of the water depth in the abyssal plain, this value is likely large enough to influence the
rate at which the dense reservoir is being drained. A much thinner hsal would be possible if differ-
ent algorithmic choices were made. For example, Ilıcak et al. (2012) used monotonicity-enforcing
advection schemes (MPDATA for ROMS, PLM for GOLD) and an unusually short timestep for
their experiments (1s for the barotropic mode). While such choices benefitted their experiments,
they go against the original focus and goals of Salmon (2002) (low diffusivity, low computational
cost, conservativeness).

Test-case 17 Double gyre

The “double gyre spin-up experiment” mimics the subtropical and subpolar gyres with a flat, 2-
layer, rotating ocean driven by meridionally-varying zonal winds. The experiment has appeared in
multiple forms in the literature and the test-case specifically follows the configuration of Salmon
(2002). The domain is rectangular, closed on all four sides, 4000 m deep, and has a linearly-
increasing Coriolis parameter f = β y (the southern boundary corresponds to the equator). We
assume no normal flow at the lateral boundaries and free slip at lateral/bottom boundaries. The
two layers have potential densities of 1030

(︂
1 − 2 × 10−3

)︂
and 1030 kg m−3 (respectively), and

layer 1 occupies the upper 100 m in the state of rest. The zonal winds vary sinusoidally with y:
the southern third of the domain corresponds to easterlies, and the northern 2/3 to westerlies. This
wind distribution eventually gives rise to a cyclonic gyre in the northern portion of the domain
and an anticyclonic gyre in the southern portion (hence the “double gyre”).

The configuration of Salmon (2002) features a coarse 100×200 grid and a mesh size ∆x = ∆y =
40 km, or approximately twice the baroclinic Rossby radius of deformation (LRossby = 18.7 km).
Salmon parameterizes the unresolved scales by prescribing (in both layers) a linear friction of the
form ∂u/∂t = . . . − λu, with λ chosen so that the Stommel boundary layer on the western edge
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of the domain is just resolved (1.5 grid cells thick). Such a Rayleigh drag is not implemented
in beom and thus the test-case departs from Salmon (2002) by instead using a dynamic viscosity
(dvis=0.1 in shared_mod.f95). It produces very high viscosities within the western boundary
layer, O(1000 m2 s−1), and very low values in the rest of the domain, allowing for more mesoscale
variability than the original Rayleigh drag. Salmon (2002) also reduces Earth’s external gravity by
a factor of 20 to lengthen his model timestep by a factor of 4.5. Here, the test-case uses the normal
gravity (9.8 m s−2) and we simply assume that the user takes advantage of beom’s parallelization
to accelerate the calculation.

The calculation starts from the state of rest while the winds are gradually introduced (‘ramped’)
over a period of two days (dt_r=2. in shared_mod.f95). A video of q1 (available on
nordet.net) illustrates the spin-up of the double gyre over a period of 12 years. The initial
meridional gradient of q1 (due to β) is rapidly disturbed by mesoscale activity originating from
the southern half of the eastern boundary (corresponding to “northern Africa”). The mesoscale
structures propagate westward and contribute to the homogeneization of q1 in the southern half
of the domain. Note that the presence of mesoscales in such a coarse grid (∆x = 2.14LRossby) is
most likely facilitated by beom’s algorithms (the sole diffusion in the layers’ thickness advection
scheme is the hyperdiffusion associated with the third-order scheme; see §E.1). In the northern
half of the domain, the interface gradually rises (eventually outcropping at the surface; h1 ∼ hsal)
and lead to high q1 values throughout the subpolar gyre.

The overall “mean surface circulation” can be visualized by averaging g−1 M1 over a long period
of time (Figure 19). Note the large gradient of g−1 M1 within the thin western boundary layer of
the two gyres, and the ‘overshoot’ of the Gulf Stream at the point of separation. In the subpolar
gyre, the term g−1 M1 includes a non-negligible contribution from Salmon’s artificial term since
the upper layer is outcropped in that area. Although our use of a dynamic viscosity prevents
an apple-to-apple comparison with Salmon (2002), the key features of the solution appear to be
consistent with his description of the test-case.

It is instructive to examine the budget of mechanical energy during the spin-up of the double
gyre (Fig. 20). The budget corresponds to Eq. 38 (discussed in §A.1) applied to the whole model
domain. Note that the divergence term in Eq. 38 drops out because of the closed lateral boundaries
(divergence theorem), leaving us with a 3-term balance between the change in mechanical energy,
the winds’ rate of work, and the dissipation associated with the sub-grid scale epipycnal viscosity.
The latter term plays a significant role at all times owing to the high velocities at the western
boundary as well as the coarseness of the grid used in this test-case. Over the first 4 years, the
dissipation is responsible for ≈ halving the net energy transfer from the winds to the ocean. The
basin’s energy stabilizes around year 8, leading to the expected balance between the work done
by winds and dissipation.

The budget is punctuated by oscillation of period O(70 days) corresponding to the mesoscale
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Figure 20: Test-case for the “double gyre” (test-case 17). The figure illustrates the budget of
mechanical energy (Eq. 38) over the duration of the calculation (12 years). The budget is given
by ∂ (energy) /∂t = winds + dissipation + residual, with dissipation < 0. The budget is for the
two isopycnal layers combined.
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disturbances described earlier (and apparent in the video of q1). As the disturbances modulate
the flow velocities (u) at the boundaries, they (in turn) leave their imprint on the wind’s rate of
work and on the dissipation term (Eq. 38). Figure 20 also illustrates the imbalance in the budget
(‘residual’). This term reflects the implicit numerical dissipation associated with the ‘general-
ized’ forward-backward scheme (§D) and with hyperdiffusion in the layers’ thickness advection
scheme (§E.1). Note that in the convention of Fig. 20, an implicit dissipation will produce a
positive residual. Approximations made while assembling the energy budget also contribute to
the non-zero residual term. For example, in testcases/double_gyre_natl.m the temporal
derivatives of Eq. 38 are computed a posteriori from outputs saved every two days (dt_o = 2.
in shared_mod.f95).

The budget reveals additional features not immediately apparent in Fig. 20. When the change
in mechanical energy is broken down into kinetic and potential, it becomes apparent that changes
in potential energy dominate over the first 8 years of the spin-up before becoming comparable
afterward. The budget terms can also be broken down for the two layers individually. The upper
layer generally dominates the budget terms and tends to mask what is happening in the lower
layer. The lower layer does not stabilize as quickly as the thin upper layer, and shows actually a
decrease in potential energy throughout the 12 years of the calculation. In other words, more than
12 years (or additional dissipation mechanisms, such as bottom friction) would be required for
the thick bottom layer to reach its stationary state. The file testcases/double_gyre_natl.m
provides a template on how to compute all the terms of such an energy budget.

Test-case 18 Southern Ocean

This test-case combines a realistic topography and a realistic wind stress field (albeit constant in
time) to be obtained by the user from public online datasets. It represents the Southern Ocean
from 90◦S to 39.7◦S with a user-adjustable mesh size ∆l. In its default configuration, the test-case
is initialized from a state of rest and assumes a coarse ∆l = 50 km sufficient to illustrate the very
first stage of the oceanic response to Southern Westerlies. The test-case offers the choice of a two-
layer or a three-layer stratification and a realistic Coriolis parameter is assumed. The three-layer
profile is based on World Ocean Atlas data at 53◦S (central latitude of the Westerlies) and corre-
sponds to a first baroclinic Rossby radius of 14.2 km (consistent with Chelton et al., 1998, their
Fig. 6). The potential density of the three layers is 1027.1 kg m−3 (250 m thick), 1027.5 kg m−3

(750 m thick), and 1027.8 kg m−3 (remainder of water column). Abundant comments in the file
southern_ocean.m discuss the steps (and pitfalls) surrounding the generation of a conformal
map projection, spatial interpolation of the topography and wind stress, etc. The test-case is
therefore a general template for creating semi-realistic configurations.

Visualization of the results in the test-case’s default configuration (∆l = 50 km, duration of
1 month) reveals a quick initial adjustment of the sea surface in response to the Westerlies. The
sea surface dominates the Montgomery potential of the three layers in this early stage, indicating
primarily barotropic dynamics. The baroclinic response to the winds is limited at this point to
the continental slope where the easterlies are prevalent. Currents are dominated by the westward
Antarctic Slope Current (driven by the easterlies) while the Antarctic Circumpolar Current (ACC)
and the familiar basin-wide tilt of the isopycnals (shoaling southward) are yet to appear. If we
assume a vertical tilt of 1 000 m between 53◦S (i.e., where the Westerlies are at their maximum
and thus where the divergence of the Ekman transport shifts from negative (upwelling) to positive
(downwelling)) and 40◦S (northernmost extent of the Westerlies), the volume of water that must
be transported across 53◦S to generate this tilt is a whopping ∼ 1.5 × 1016 m3. With a Ekman
transport of τ/ (ρ f ) ≈ 1.69 m2 s−1 acting across the 53◦S parallel (circumference 2πR ≈ 2.4 ×
107 m), the tilting of the isopycnals would require no less than 12 years of spin-up.

Ward and Hogg (2011) describe the sequence of events for the spin-up of the Southern Ocean
in a configuration that shares similarities with the present test-case. The key differences are their
domain geometry (a re-entrant zonal channel), more idealized topography, more idealized wind
stress, and a stratification that is unrealistically strong (at least for the Southern Ocean). Their
strong stratification leads to a fairly large Rossby radius of deformation that is fully resolved by
their mesh size. Ward and Hogg (2011) show that the fully spun up Southern Ocean relies on
form stress (aka interfacial stress) to transmit the zonal wind stress across the isopycnal layers
in such a way that the Ekman dynamical balance between zonal stress and meridional transport
eventually vanishes. The interfacial stress of isopycnal models like beom is effectively zero until
mesoscale eddies begin to populate the model domain5, so eddies are an essential ingredient in
the spin-up of the ACC. Ward and Hogg (2011) estimate that their channel configuration attains a
statistical equilibrium after > 30 years of spin-up.

When the mesh size ∆l of the test-case is reduced to ∆l = 10 km (i.e., slightly smaller than the
Rossby radius of 14.2 km) the test-case becomes ‘eddy-permitting’ (but not ‘eddy-resolving’).
The first eddies appear after ∼ 1 year of spin-up in specific regions offshore associated with large
stationary cyclonic gyres. These sites dominate the ‘eddy production’ during the first 3 years
of spin-up until isopycnal slopes become sufficiently steep for the production to spread to other
areas. The tilting of the isopycnals (upwelling southward of 53◦S, downwelling northward of
53◦S) proceeds very gradually and reaches 500 m in each direction after 5 years. By that time, the
top layer (of initial thickness 250 m) has vanished over the continental slope (h1 ∼ hsal) and the
second layer (1027.5 kg m−3) is now exposed to the wind stress (Fig. 21).

This 5 year spin-up of the 10 km configuration is slowly evolving in the right direction but

5This is in contrast with traditional Earth System Models that use some variations of Eulerian vertical coordinates
with relatively high sub-grid scale vertical viscosities.
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it is also far from the equilibrium described by Ward and Hogg (2011). The zonal dynamical
balance necessary for the ACC to emerge (Ward and Hogg, 2011) is still in its infancy (and may
require a mesh size < 10 km when using the realistic 3-layer configuration) and we know from
hydrographic surveys that the tilt of the isopycnals will eventually be larger (thousands of meters,
e.g., Orsi et al., 1995). Ocean models are very rarely initialized from rest and more commonly
use an initial density field that is already spun-up and resembles observations. The same could
be done here by prescribing an initial condition with non-zero interface elevations and velocities
(see, e.g., Test-case 5 for an example).

Appendix A Model Equations

Under the assumptions of hydrostatic motion, incompressible flow and incompressible Boussi-
nesq fluid, the momentum equation in isopycnal coordinates is (e.g., Hsu and Arakawa, 1990):

∂u
∂t
= −q e3 × h u − ∇hB +

1
ρ0

∂τ

∂z
− ∇ · u′u′ (27)

where u is the Reynolds-averaged and layer-averaged horizontal velocity vector (whose compo-
nents u,v are aligned with the grid’s x,y directions), h the layer thickness, q ≡ (ζ + f ) /h, ζ, f
the potential, relative, and planetary vorticities, respectively. B ≡ M + u · u/2 is the Bernoulli
potential, M the Montgomery potential, and τ, u′u′ the stresses from the Reynolds decomposi-
tion. In Fig. 1 I consider an example with two layers (N = 2) for simplicity, and decompose the
thicknesses as:

h2(x, y, t) = h0
2(x, y) + η2(x, y, t), (28)

h1(x, y, t) = h0
1(x, y) + η1(x, y, t) − η2(x, y, t), (29)

where h0 is the layer thickness for the ocean at rest, and η is the interface displacement from
its equilibrium position. The layers are allowed to become very thin (but non-zero) where they
intersect the bottom, the surface, or other layers. The layer thickness evolves as:

∂hi

∂t
= −∇ · hi ui. (30)

Figure 21: Elevation of the second interface (η2) after 5 years of spin-up from an initial state of
rest (Test-case 18). The interface is initially at a depth of 250 m (corresponding to η2 = 0 m).
Dark red corresponds to areas where the top isopycnal layer has vanished (outcrop).
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The Montgomery potential is derived from the hydrostatic equation or (equivalently) from the
basin potential energy V (Salmon, 2002):

V ≡

$
ρ g z dz dx dy, (31)

Mi

g
(x, y, t) =

1
ρi g

δV
δhi
= −H(x, y) +

N=2∑︂
k=1

min (ρi, ρk)
ρi

hk(x, y, t) (32)

= η1(x, y, t) +
N=2∑︂
k=1

h0
k(x, y) − H(x, y) −

i−1∑︂
k=1

ρi − ρk

ρi
hk(x, y, t). (33)

In simple cases the second and third terms of the last line cancel each other, and ∂M2/∂x reduces
to the familiar form ≈ ∂/∂x

[︁
g η1 + g (ρ2 − ρ1) η2/ρ2

]︁
. Following Salmon (2002) an artificial term

can be added to M to prevent h from reaching zero (see §C). The temporal and spatial discretiza-
tion of Eqs. 27,30 are described in Appendices D and E.1. Following Adcroft and Marshall
(1998), the divergence of Reynolds’ stresses is parameterized as:

−∇ · u′u′ ≡ e1
[︂
δx (µccD) − δy (µllζ)

]︂
/∆l

+ e2
[︂
δx (µllζ) + δy (µccD)

]︂
/∆l (34)

where δx, δy are the finite-difference operators, ∆l = ∆x = ∆y is the mesh size, D ≡ ∇ · u, and
µcc, µll is the sub-grid scale epipycnal viscosity computed at cell-center (cc) or at the lower-left
corner (ll), respectively. In simple cases where µ is constant, Eq. 34 becomes equivalent to (i.e.,
it can be rewritten as) the usual Laplacian friction ∂/∂x (µ∂u/∂x) + ∂/∂y (µ∂u/∂y) and the two
formulations only differ around coastlines (see Adcroft and Marshall, 1998). The condition at
lateral boundaries is set to free-slip (see Deremble et al., 2011; Ketefian and Jacobson, 2009;
Dupont et al., 2003) (see also §E.1). Following Leith (1996) and Fox-Kemper and Menemenlis
(2008), the epipycnal sub-grid scale (“eddy”) viscosity varies in space and time as:

µ ≡ bvis + dvis (∆x)3
√︁
|∇ζ |2 + |∇D|2, (35)

where bvis is a constant background viscosity (m2 s−1), the second term on the right-hand side is
a time- and space-varying ‘dynamic’ viscosity (also known as a ‘non-linear’ or ‘adaptive’ viscos-
ity), and dvis is a non-dimensional coefficient (≥ 0). The sub-grid scale viscosity of Leith (1996)
is similar to the Smagorinsky (1963) viscosity but it is specifically designed for 2–D (epipycnal)
turbulence and gives better results in benchmarks (Graham and Ringler, 2013). Fox-Kemper and
Menemenlis (2008) suggested adding the term |∇D| to Leith’s viscosity to handle cases where D
becomes comparable to ζ. The |∇D| part is also the sole contribution to the dynamic viscosity in
true 2–D flows of the x-z plane, since v, ∂u/∂y and ζ are then zero by definition.

The role of the dynamic component (second term on right-hand side of Eq. 35) is to provide
high viscosity where/when it is needed and, otherwise, to drop down to a small background value
(bvis). The role of bvis is to quash some of the numerical noise before it becomes large enough
to be captured by the dynamic component. For most applications 0 ≤ dvis ≤ 1. and bvis → 0.
Alternatively, one can deactivate the dynamic component by setting dvis to zero and set bvis
to a suitably high value (the latter being case-dependent). This approach is useful to replicate
existing test-cases with a particular viscosity value or Reynolds number (e.g., Ilıcak et al., 2012).

A.1 Kinetic, potential and mechanical energy
Following Arakawa and Lamb (1981), the rate of change of kinetic energy in a given layer is
obtained by multiplying Eq. 27 by u, invoking u · ∂u/∂t = ∂ (u · u/2) /∂t, integrating vertically
over the layer’s thickness h, and then using Eq. 30:

∂

∂t
h

u · u
2
= −∇ ·

(︃u · u
2

h u
)︃
− h u · ∇M +

∫︂
u
ρ0
·
∂τ

∂z
dz − h u · ∇ · u′u′, (36)

where −h u · ∇M is the kinetic-to-potential energy conversion (e.g., Simmons et al., 2004). The
rate of change of potential energy is obtained by multiplying Eq. 30 by M:

M
∂

∂t
h = −∇ · M h u + h u · ∇M, (37)

and we note that the conversion term appears in both Eqs. 36–37 (with opposite signs). Adding
the left hand sides and right hand sides of Eqs. 36–37 leads to the equation for the rate of change
of mechanical energy:

∂

∂t
h

u · u
2
+ M

∂

∂t
h = −∇ ·

[︃
h u

(︃u · u
2
+ M

)︃]︃
+

∫︂
u
ρ0
·
∂τ

∂z
dz − h u · ∇ · u′u′, (38)

whose left-hand side, in the simplistic case of a single layer and no outcropping, reduces to (e.g.,
Arakawa and Hsu, 1990):

∂

∂t

[︄
h
(︄
u · u

2
+

g h
2
− g H

)︄]︄
=
∂

∂t
(mechanical energy) , (39)

which provides a convenient definition for “mechanical energy”. In the more general case of
Eq. 38, there is no simple way to define “mechanical energy”. The potential energy at time t must
then be defined relative to an earlier time t0:

∫︁ t

t0
M ∂h/∂t′ dt′. See test-case 17 for an example of

the mechanical energy budget.
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A few remarks on those relations. (1) Since ρ is homogeneous inside a given layer and constant
over time, Eqs. 36–38 can be trivially multiplied by ρ and multiplied by ∆x,∆y to recover the usual
units of energy (kg m2 s−2, i.e., Joules). (2) We made use of vector and product rule identities that
are valid in the continuous case but not always valid in discretized cases. For example, Simmons
et al. (2004) discuss some of the pitfalls arising from a barotropic/barocline time-splitting (which
isn’t used in beom). (3) When building a volume-integrated budget, the kinetic energy u · u/2
is typically computed at the center of the grid cell (e.g., Arakawa and Hsu, 1990, their Eq. 3.9)
so that it can be directly multiplied by h (also defined at the cell’s center). The divergence term
is evaluated in a finite-volume sense with h u (u · u/2 + M) computed at the edges of the cell.
The term representing the wind’s rate of work and the bottom friction’s work are computed by
evaluating the components of τ at the location of the velocity points u,v individually. (4) If
the algorithms of the model involve “numerical diffusion”, then an extra term (a sink) must be
added to Eq. 38. As discussed in §G.3, there are two mild forms of “numerical diffusion” in
beom that (overall) should have a minor impact on the energy budget. The magnitude of the
numerical sink can be estimated by comparing two calculations (one with and the other without
the numerical dissipation), or by computing the residual of the energy budget and attributing it
to implicit diffusion. (5) Eqs. 36–38 are the “standard” budget equations to test conservation
laws in a numerical code (e.g., Sadourny, 1975; Arakawa and Hsu, 1990; Ketefian and Jacobson,
2009). However, when it comes to interpreting the physical results, the literature proposes many
other decompositions such as barotropic/baroclinic components, mean/eddy components, etc. For
example, test-case #3 uses a definition of “potential energy” that is less general than Eq. 37 and
focuses specifically on the barotropic mode.

A.2 Conservation of vorticity and potential vorticity
Following Arakawa and Lamb (1981), we apply the curl operator on Eq. 27 and invoke ∂ f /∂t = 0
to yield:

∇ ×
∂u
∂t
=
∂ζ

∂t
=
∂

∂t
(h q) = −∇ · q h u + ∇ ×

1
ρ0

∂τ

∂z
− ∇ × ∇ · u′u′, (40)

which can be described as a conservation statement for relative vorticity ζ, for absolute vorticity
f + ζ, or for the thickness weighted potential vorticity (h q). Note that the artifical term of Salmon
(2002) (contained in M) does not enter Eq. 40 and thus the conservation statement is unaffected
by its presence.

A different conservation statement is obtained if we multiply Eq. 30 by q, combine with Eq. 40,
and then divide by h:

∂q
∂t
= −u · ∇q +

1
h
∇ ×

1
ρ0

∂τ

∂z
−

1
h
∇ × ∇ · u′u′. (41)

Equation 41 indicates that, in absence of Reynolds stresses, potential vorticity q is materially
conserved. For this result to hold, the model requires a layer thickness advection scheme that
does not introduce additional diffusion inside Eq. 30. In the case of beom, Eq. 30 has only a weak
implicit hyperdiffusion term (§E.1) that leaves Eq. 30 largely unmodified. If a more diffusive
thickness advection scheme were used, then an artificial term would need to be added to Eq. 41
to account for the numerical diffusion of h.

Appendix B Files and structure of the code
beom is entirely contained inside three Fortran 95 files: main.f95, shared_mod.f95, and
private_mod.f95. The file main.f95 is the main program. In the simplest cases it only in-
cludes a directive to run the ocean model (call run()) and then a quit() statement. More
complex cases would include coupling with other models such as SWAN (surface waves) or
CICE (sea ice). All those directives are to be defined in the file main.f95.

The second file (shared_mod.f95, ≈ 200 lines of code) is a Fortran module that contains all
the model parameters. This includes everything from physical constants (grav = 9.8), the pre-
cision of real variables, up to the model grid size (lm and mm) and the directory where the model
results should be written to (odir = ’/tmp/’). In nearly all cases, the file shared_mod.f95 is
the only file you need to understand and modify for your purposes. The comments within the file
(!) clearly identify which parameters can be modified and what they represent.

The last file (private_mod.f95, ≈ 2000 lines of code) is a Fortran module that contains the
procedures and arrays involved in a calculation. As its name implies, the module is defined as
private and there is no need to modify this file for a calculation. You can think of it as the engine
hidden under the hood of a car. All the model parameters and physical constants are defined in
shared_mod.f95 and the only reason to pop the hood is if you are interested in the mechanics.
Most subroutines are reasonably documented and include references to the relevant papers. A
simplified flowchart looks like this:
call run()

1. read_input_data
(a) check_consistency_options
(b) read_input_file(’h_bo’) (if file h_bo.bin is provided)
(c) index_grid_points
(d) read_input_file (repeat for remaining files inside directory idir)
(e) get_equilibrium_thickness_h_0 (if ocrp is activated)
(f) save_metadata (document the value of each model parameter in this calculation)
(g) write_outputs (save the initial condition as the first output record)

i. write_array (repeat for every prognostic variable)
2. integrate_time
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(a) distribute_stress (if ocrp is activated)
(b) first_three_timesteps (standard forward-backward for first 3 timesteps)

i. update_n
ii. update_mont_rvor_pvor_dive_kine

iii. update_viscosity
iv. update_u
v. update_v

(c) gener_forward_backward (repeat steps i to v for every remaining timesteps)
call quit()

B.1 Precision of arithmetic operations (parameter rw)
The file shared_mod.f95 contains a user-adjustable parameter rw (“Working precision of Real
numbers”) that can be set to either r4 (single-precision arithmetic) or r8 (double-precision arith-
metic). Most arithmetic operations can be safely conducted in single precision, with the benefit
that the memory usage is nearly halved (relative to r8) and that the runtime is reduced by a factor
that is application-dependent. There are, nevertheless, parts of the code that always necessitate
double precision arithmetic, notably the treatment of dates in Matlab’s datenum format and most
operations that involve the layers’ thickness h. These key components of the code were ‘hard-
ened’ so that they use double precision arithmetic irrespective of whether rw is set to r4 or r8.
This being said, there can always be situations where the use of r4 can lead to unexpected issues.
You should not hesitate to revert to r8 if you suspect this is a concern. Note that most Fortran
compilers can be requested to track down serious floating point exceptions (e.g., overflows).

B.2 Output files & Restarting a model calculation
The code generates output files in single precision (4 bytes per real number) using a custom binary
file format that can be subsequently processed in a variety of languages (Octave, Matlab, Python,
Fortran. . . ). The output files inherit the endianness of the computer used for the original calcula-
tion (i.e., little endian under Linux) but this behavior can be modified in most Fortran compilers
by using specific compilation flags. See the Octave/Matlab script get_field.m for an example
of how to read output files created in little endian format. (Although the file format NetCDF has
established itself as the standard for model outputs in the ocean modeling community, this format
was voluntarily avoided so that the code would remain self-sufficient.) Note that only ‘wet’ grid
points are included in beom’s outputs in an effort to limit their size (see §E). Note also that beom
does not have a mechanism to average the model fields over time. Therefore, the user is expected
to save their model variables frequently enough that the shortest physical timescale of interest is

properly sampled (e.g., hourly in a tide-dominated estuary, daily in a regional basin dominated by
mesoscales vortices, weekly in a coarse basin-scale domain, etc).

The default behavior of the code is to associate each prognostic model variable with a given
output file (η and eta_.bin, u and u___.bin, v and v___.bin) for the entire duration of a
model run. If a power failure occurs before the code reaches the end of its calculation (as in the
classic experiment of Edward Lorenz), a ‘restart’ mechanism is available to continue a previous
calculation. To trigger this mechanism, one only needs to set the parameter rsta to 1. inside
file shared_mod.f95 and to re-compile. beom will inspect the file time.txt, use the model
fields corresponding to the last time entry as its initial condition, and add the new results at the
end of the existing files (rather than overwriting the files). In a different scenario, the previous
calculation may have ended with non-physical results (e.g., NaN, or unrealistically high velocities
indicating an imminent crash). The user can easily restart from an earlier point of the calcula-
tion (e.g., 2 or 3 records next to the last) by deleting as many entries as desired inside the file
time.txt. The code will use the last entry that it finds in time.txt as the initial condition of the
‘restart’. Note that entries inside time.txt always indicate a complete and successfull writing
of the model variables. If the writing is partial and incomplete (because, say, the computer hard
drive ran out of space while writing the last record), the corresponding time-stamp will not appear
in file time.txt. Finally, note that during a restart, the dt_s value inside shared_mod.f95 sets
the duration of the calculation starting from the point of the restart. For example, if a calcula-
tion originally had a value dt_s=365. and crashed, and beom is restarted from day 35 (without
changing dt_s), then the calculation will continue until it reaches 35 + 365 days.

Additional model variables are saved to disk when the parameter diag is set to 1. inside file
shared_mod.f95: q (pvor.bin), g−1 M (mont.bin), µcc (v_cc.bin), and µll (v_ll.bin).

B.3 Reproducibility of results
Results from beom are ‘deterministic’ in the sense that the code produces the same exact re-
sults when executed repeatedly under identical conditions6. Here, ‘identical conditions’ means
“while using the same executable, same computer, same input files, and same input parameters”.
This is an important point as numerical codes are normally compiled with high compiler opti-
mization levels (-O2 or higher), in which case any insignificant change in the code (including in
shared_mod.f95) has the potential to change when/where round-off errors occur. The use of
different computers will also introduce differences in the results, unless absolutely all compiler
optimizations are deactivated (leading to an unacceptable penalty in speed). In summary, any de-
parture from ‘identical conditions’ will introduce differences at the level of arithmetic precision.

6Note that the results wouldn’t be deterministic if one of the algorithms used random number generation to
represent, e.g., a diffusion process.
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The impact of these minuscule differences between two calculations conducted in non-identical
conditions will ultimately depend on the physics. Calculations where the non-linear terms are ab-
sent (as in the test-case of Stommel (1948)), or where the flow field is strongly constrained by
boundary conditions, should exhibit negligible differences in all circumstances. At the other end
of the spectrum, the worst-case scenario would feature a vigorous, unforced flow (with non-linear
terms such as momentum advection activated) and subject to baroclinic and/or barotropic insta-
bility. In this worst-case scenario, differences in round-off errors between the two calculations
may eventually be sufficient to influence when/where dynamical instability occurs (“butterfly ef-
fect”). Once this point is reached, the instantaneous flow fields from the two calculations will
become visibly “different”. The two calculations will still have a lot in common: they should
yield quasi-identical long-term statistics (mean flow/fluxes, spectrums, eddy kinetic energy), but
the instantaneous fields of the two calculations will appear to have diverged.

Note that these numerical considerations are not specific to beom and naturally arise in most
numerical codes of geophysical fluid dynamics. For example, the ‘butterfly effect’ is routinely
exploited in numerical forecasts of hurricane trajectories (or in climate projections) to obtain
different (but equally valid) realizations. The different realizations are used to statistically define
the most likely outcome and the range of uncertainty.

Appendix C Isopycnal outcrops and wetting-drying

C.1 Salmon’s 2002 scheme

Isopycnal surfaces become discontinuous (undefined) wherever they intersects the sea floor, the
sea surface, or another isopycnal. Bretherton (1966) interprets such discontinuities as the layer
being still active but infinitesimaly thin (a δ-sheet). The same concept is referred to as a ‘mass-
less layer’ by Hsu and Arakawa (1990). From a modelling point of view, the difficulty is changed
from handling spatial discontinuities to handling very small thickness values.

Isopycnal models traditionally rely on monotonic or positive-definite advection schemes (e.g.,
Smolarkiewicz and Margolin, 1998) to handle such near-zero layer thicknesses. beom differs
from these models by following an approach proposed by Salmon (2002). In this scheme, the
Montgomery potential (§A) is modified by adding an artificial term that ‘pushes’ the fluid toward
areas where the layer thickness is vanishing. The artificial term is defined to be negligible every-
where except in locations and times where h→ 0. The scheme of Salmon (2002) can be activated
by setting ocrp = 1. inside the file shared_mod.f95.

In the approach proposed by Salmon (2002), the state of rest (∂u/∂t = 0) is defined by the

Montgomery potential of each layer i being everywhere equal to a given constant Ci:⎡⎢⎢⎢⎢⎢⎣ N∑︂
k=1

h0
k(x, y) − H(x, y)

⎤⎥⎥⎥⎥⎥⎦ − i−1∑︂
k=1

ρi − ρk

ρi
h0

k(x, y) −
hsal

3

(︄
hsal

h0
i (x, y)

)︄3

= Ci, (42)

which should be compared to the original equation (Eq. 33). The last term on the left hand
side is the artificial term proposed by Salmon, and hsal is a constant named the ‘Salmon thickness’
(Primeau and Newman, 2007). Note that the state of rest implies that η1(x, y, t) = 0 and hi(x, y, t) =
h0

i (x, y). The constants Ci are obtained by evaluating Eq. 42 at the location x, y of maximum depth
(Hmax ≡ max

[︁
H(x, y)

]︁
). At this specific location, the thicknesses are approximately given by (the

actual value will deviate slightly if the artificial term is non-zero at this location):

h0
i<N = Hmax × [topl(i + 1) − topl(i)] , h0

N = Hmax × [1 − topl(N)] , (43)

where topl (top of layers) is a vector defined by the user (see Fig. 1). Eq. 42 represents a set
of N non-linear equations that must be solved at each x, y position to obtain the ‘equilibrium
thickness’ h0

i (x, y) of the layers. Following Salmon (2002), Eq. 42 is solved iteratively with New-
ton’s method. Defining h as the vector containing the values h0

i and denoting Eq. 42 as f (h), the
thicknesses are iterated as:

J
(︂

f (hl)
)︂ (︂

hl+1 − hl
)︂
= − f

(︂
hl

)︂
, (44)

where J is the Jacobian matrix of f (h) and the subscript l denotes the iteration. Each iteration
corresponds to solving a linear set of N equations. The thicknesses are iterated until a tolerance
O(10−6 meters) is reached.

It is important to note that the equilibrium thickness h0
i (x, y) only needs to be computed once

(at the initialization stage of the model). The whole procedure is computionally-cheap since it is
a local 1–D (vertical) calculation and the number of layers is typically small (say, N < 5). The
‘pressure gradient’ computed at each model time-step is:

∇
Mi(x, y, t)

g
= ∇

⎡⎢⎢⎢⎢⎢⎣⎛⎜⎜⎜⎜⎜⎝ N∑︂
k=1

hk(x, y, t) − H(x, y)

⎞⎟⎟⎟⎟⎟⎠ − i−1∑︂
k=1

ρi − ρk

ρi
hk(x, y, t) −

hsal

3

(︄
hsal

hi(x, y, t)

)︄3⎤⎥⎥⎥⎥⎥⎦ , (45)

this particular formulation being suitable for single precision arithmetic (in most cases the three
terms in Eq. 45 have the same order of magnitude). The first term is recognized as a barotropic
contribution due to the free surface, the second term represents the baroclinic pressure gradient,
and the last term is the artificial term of Salmon (2002).

Salmon’s approach assumes that the dynamical balance (and the relative importance of the
artificial term inside Eq. 45) doesn’t change too abruptly from one grid cell to the next. An exces-
sively abrupt transition can occur if the ratio (hsal/hi)3 (from the last term in Eq. 45) changes
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dramatically from one grid cell to the next. This situation can occur, for example, if the
model bathymetry includes poorly resolved (i.e., aliased) bathymetric features. Users of realistic
bathymetries would thus be advised to slightly smooth the original bathymetric chart to avoid this
situation. As in the testcase on ‘Isopycnal outcropping’, the user can test their bathymetric grid
in the model’s state of rest and verify that the velocities remain within, e.g., 10−4 m s−1 and that
they do not grow over time.

Salmon (2002) discusses the advantages of his approach. First, it is considerably cheaper
(computationally speaking) than a positive-definite algorithm (MPDATA, FCT, TVD; e.g., Smo-
larkiewicz and Margolin, 1998) as used in MICOM (Bleck and Smith, 1990). Potential energy (as
re-defined by Salmon) and kinetic energy conservations are preserved by Salmon’s method. Vor-
ticity conservation is also preserved since the artificial term is a gradient (i.e. it disappears when
calculating the curl of the momentum equation). Finally, the model equations remain differen-
tiable (upwind-biased and FCT schemes are not) which is valuable when calculating bifurcations
(Primeau and Newman, 2007) or an adjoint operator. A drawback of Salmon’s approach is that
it sets a lower bound on the thickness of the layers (Eqs. 12–14) while even a primitive 1st-order
upwind scheme would not. Another drawback is that the choice of hsal is problem-dependent and
the user is expected to test the sensitivity of their results to this important parameter.

C.2 Stress and surface/bottom boundary layers
The traditional multi-layer shallow-water equations (§A) assume that the surface/bottom bound-
ary layers are fully contained inside the surface/bottom isopycnal layers (respectively). In other
words, the top and bottom isopycnal layers are assumed to be sufficiently thick that the Reynolds
stress divergence term, ρ−1∂τ/∂z, goes to zero within the isopycnal layer. With this assumption,
the term reduces to τ/ (ρ h), which is applied to the surface/bottom isopycnal layers. Outside of
those surface/bottom isopycnal layers, the term ρ−1∂τ/∂z is assumed to be zero. Ekman layers
and their spiral are not explicitly represented in traditional multi-layer shallow-water models; only
their vertically-integrated effect is represented.

The situation becomes more complicated when the surface/bottom layers are allowed to be-
come thin or vanish (ocrp = 1. in file shared_mod.f95; see §C.1). The Reynolds stress
τ(x, y, z) enters the zonal momentum equation as:

∂u
∂t
= . . . +

1
ρ

∂τ

∂z
, (46)

and after discretization onto layer i this becomes:

∂ui

∂t
= . . . +

1
ρi hi

∫︂ zi

zi−hi

∂τ

∂z
dz, (47)

where zi < 0 is the vertical position of the interface separating layers i and i − 1. The model
assumes that the Reynolds stress at the surface/bottom decays linearly over a constant and uni-
form ‘boundary layer thickness’ (hsbl for surface, hbbl for bottom) set by the user in the file
shared_mod.f95. For the surface stress τs this is:∫︂ zi

zi−hi

∂τ

∂z
dz =

{︄
0 if zi < −hsbl,
τs × {max [0,min (hi − 1.5 hsal, zi + hsbl) /hsbl]} if zi > −hsbl,

(48)

where the non-dimensional quantity {. . .} is named layt (layer-top) in the code (see the subroutine
distribute_stress). This parameterization distributes the surface stress amongst the layers
when ocrp is activated. Note that hi − 1.5 hsal is used in place of hi to ensure that no stress is
applied to layers that have vanished (i.e. layers with h ≤ 1.5 hsal). The array layt is updated
every dt3d days during a calculation.

The bottom stress is calculated from the horizontal velocities in the deepest layer having a
thickness ≥ 2hsal (i.e. we ignore the deep layers that are ‘mass-less’). Then, the bottom stress is
distributed over a boundary layer of thickness hbbl (same way as for the surface stress).

If ocrp = 0. (i.e. no outcrops allowed) then the surface (bottom) stress is only applied to the
uppermost (bottom) layer.

Appendix D Temporal discretization

D.1 Forward-Backward versus ‘Generalized’ Forward-Backward
The code uses explicit time-stepping schemes where all prognostic variables are advanced with a
single time-step ∆t. Explicit schemes are simpler than implicit ones, they are more accurate, and
they have better scalability on parallel computers. Following Beckers and Deleersnijder (1993,
their Eq. 44) and assuming a C-grid of uniform mesh size ∆x, the maximum stable time-step is:

(∆t)max =
1
2
∆x
√

g Hmax
. (49)

It is assumed that the number of active layers (N) is sufficiently small that the model runtime
remains competitive with split-explicit schemes. Note also that split-explicit schemes introduce
difficulties (Hallberg and Adcroft, 2009; Simmons et al., 2004) that are absent in beom.

Two different time-stepping schemes are available in beom: the ‘standard’ Forward-Backward
(FB) scheme (used for the barotropic mode of MICOM, Bleck and Smith, 1990), and the ‘general-
ized’ FB scheme (used for the barotropic mode of UCLA-ROMS, Shchepetkin and McWilliams,
2005). The standard FB is a single-stage, single time-level, explicit algorithm. In a simple case
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with a single layer, no momentum advection, no forcing and no dissipation, the standard FB
scheme reduces to:

ηn+1 = ηn + ∆t × rhs
[︁
un, vn, ηn]︁ , (50)

un+1 = un + ∆t × rhs
[︂
ηn+1, vn

]︂
, (51)

vn+1 = vn + ∆t × rhs
[︂
ηn+1, un+1

]︂
, (52)

where n is the time-level, and ‘rhs’ represents the right hand side of the prognostic equations. We
see that the surface η is calculated ‘forward’ in time (i.e. from un, vn, ηn), and the velocity is calcu-
lated ‘backward’ in time (i.e. from the newly updated ηn+1). Following Bleck and Smith (1990),
the time-stepping sequence alternates between η, u, v and η, v, u so that both velocity components
benefit from a ‘backward’ Coriolis term. The standard scheme is simple, it allows relatively long
time-steps ∆t, and it can be used on the very first time-steps as it does not require information
other than the current state of the model variables (t = n). The scheme does not include any
numerical dissipation and thus conserves mechanical energy in simple cases.

The generalized FB scheme is a single-stage, four time-levels algorithm (Shchepetkin and
McWilliams, 2005, their Eq. 2.49):

ηn+1 = ηn + ∆t × rhs
[︂
(u, v, η)n, (u, v, η)n−1, (u, v, η)n−2

]︂
, (53)

un+1 = un + ∆t × rhs
[︂
ηn+1, ηn, ηn−1, ηn−2, vn

]︂
, (54)

vn+1 = vn + ∆t × rhs
[︂
ηn+1, ηn, ηn−1, ηn−2, un+1

]︂
. (55)

The averaging of the different time-levels increases the accuracy of the scheme but also damps
high-frequency oscillations (i.e. close to the cutoff ∆t−1 ∼

√
g Hmax/∆x) and prevents them from

‘contaminating’ the well-resolved scales. This also means that the scheme is slightly dissipative
and that the mechanical energy associated with high-frequency divergent motion will decay in
time in absence of forcing (slow divergent motion and rotational motion are largely unaffected).
The ‘soliton’ test-case particularly benefits from the ‘generalized’ scheme as this test-case can be
executed without any explicit dissipation. The ‘standard’ scheme fails in this particular test-case
unless strong dynamic viscosity (dvis=1.) is introduced.

The binary flag g_fb (inside module shared_mod.f95) determines which scheme is used dur-
ing a calculation. A value of 1. corresponds to the generalized scheme, and 0. to the standard FB
scheme. Note that the generalized FB relies on the standard FB scheme for the first few time-steps
of a calculation to ‘fill’ the time-levels n−2 and n−1 (see subroutine first_three_timesteps).

D.2 dt3d and the time-stepping of viscous terms
With its default parameters, the model updates all the physical variables with a single time-step
∆t set by its most stringent physical process: the propagation of long surface gravity waves (see
Appendices A,D). In many cases, the viscous terms representing lateral viscosity and bottom
friction evolve at a much slower pace, and we could ‘skip’ a few barotropic ∆t with a negligible
impact on the physical solution. This is particularly true in non-divergent flows such as the test-
case of barotropic instability.

The model parameter dt3d allows us to exploit the slow evolution of the viscous terms and to
save some CPU cycles. This parameter (set inside the file shared_mod.f95) has units of days and
represents the time between each update of the viscous terms. This includes (1) the distribution
of the surface/bottom drag across the layers (§C.2 and subroutine distribute_stress) and (2)
the dynamic viscosity (Eq. 34 and subroutine update_viscosity). The default value, dt3d =
0., indicates that the viscous terms should be evaluated at every barotropic timestep.

Appendix E Spatial discretization and indexing of grid points

E.1 Spatial discretization
The model follows standard finite-difference methods by having its variables positioned on a
regular ‘C’ grid (e.g., Arakawa and Lamb, 1981) of uniform horizontal resolution ∆x = ∆y. The
zonal velocity point u is on the left edge, meridional velocity point v on the bottom edge, surface
elevation η at cell-center, and vorticity point at lower-left corner (Fig. 22). The ‘C’ grid is well
suited for coastal modelling where the first Rossby radius of deformation is well resolved.

The momentum equation (Eq. 27) has two terms that must be discretized in space: the Coriolis-
advection term (qe3 × h u) and the Bernoulli potential gradient (∇B). The Bernoulli gradient is
discretized as in Arakawa and Lamb (1981) while the Coriolis-advection term follows the so-
called EEN scheme of Madec (2016) (note that EEN goes back to Burridge and Haseler, 1977).
This combination conserves energy in a general flow and conserves potential enstrophy in a
non-divergent flow. EEN represents a compromise between the simple discretization schemes
of Sadourny (1975) and the fully conservative discretization schemes of Ketefian and Jacobson
(2009) and Arakawa and Lamb (1981). Le Sommer et al. (2009) consider EEN a major improve-
ment over the schemes of Sadourny (1975). Arakawa and Hsu (1990) also point out (in their
§5) that EEN is better suited than other discretization schemes for cases involving isopycnals of
infinitesimal thickness h (and thus infinite q; see §C).

The continuity equation (Eq. 30) is discretized as in Arakawa and Lamb (1981) but with a
higher-order approximation for the thickness flux at the cell edges. The second-order centered
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interpolation of h is replaced with:

u h ≡ ui
hi−1 + hi

2
−max(ui, 0)

hi−2 − 2 hi−1 + hi

6
−min(ui, 0)

hi−1 − 2 hi + hi+1

6
, (56)

= max (ui, 0)
[︄
hi−1 + hi

2
−

hi−2 − 2 hi−1 + hi

6

]︄
+min (ui, 0)

[︄
hi−1 + hi

2
−

hi−1 − 2 hi + hi+1

6

]︄
,

where ui is the zonal flow at the left edge of a cell and h is defined at the center of the cells (indices
i − 2 to i + 1). Eq. 56 was proposed by Shchepetkin and McWilliams (2005, their page 394) and
represents an upstream-biased interpolation with a hyper-diffusive truncation. It is similar to
the third-order UTOPIA scheme but with all the quadratic terms neglected (see Shchepetkin and
McWilliams, 1998, their Appendix B). The diffusion only occurs at the grid scale and it leaves
the well-resolved scales intact. The numerical diffusion implicit to Eq. 56 is the only form of
diffusion applied to the layer thickness.

The benefits of the higher-order interpolation (i.e. last two terms of Eq. 56) are most apparent
in cases of flow-topography interactions (e.g. Test-case #7, Stratified flow over topography). The
hyper-diffusion considerably reduces the noise at the grid level and allows for a smooth solution
even with zero viscosity. Note that the last two terms of Eq. 56 are forced to zero in regions of
outcrop (h < 5hsal) to ensure that the hyper-diffusion does not interfere with Salmon’s method.

E.2 Indexing of grid points
Large-scale ocean models traditionally used structured grids where all grid points are indexed in
two-dimensional or three-dimensional arrays that mimic their location in physical space. With
such structured grids, neighboring cells are identified simply by incrementing/decrementing the
array indices. beom differs from traditional finite-difference models by having the grid points
of a layer indexed into a one-dimensional array. Most coastal models use such an unstructured
indexing because it is more flexible and adapted to the complex geometry of estuaries.Operations
are conducted only in coastal areas and all unnecessary cells representing land are discarded (e.g.,
Backhaus, 2008).

In the code, each model variable of a given layer is represented by a vector of length ndeg+1.
In the example of Fig. 22, ndeg=32 and the zonal velocities u are stored as:

real :: u( 0 : ndeg, nlay )

All the model variables share the same indexing and dimensions (ndeg + 1) × nlay. The index
0 is used to represent the value of the variable on discarded cells (usually zero). Interactions
between neighboring cells necessitate a table of connectivity (array neig in the code) that provides
the index of the 8 neighbouring cells. For instance, the index of the cell located on the right of a
given cell ipnt is given by:

index_to_neighbor_on_the_right = neig(1, ipnt)

where the first argument is an integer between 1 and 8 that identifies the neighbors in a counter-
clockwise sense (starting at 1 for the neighbor on the right). The array subc(ipnt, 2)works the
other way around, by providing the i,j indices that correspond to a given wet cell ipnt. Those
familiar with Matlab can see that subc is similar to the function ind2sub.

The indexation of the grid cells is done automatically by the code. It only requires as in-
put a raw topographic grid (i.e. a two-dimensional array of real positive numbers representing
the water depth in meters; see the test-cases for examples). The code distinguishes ‘wet’, ‘dry’
and ‘discarded’ cells according to depth and position. All cells shallower than 2 × hdry are
either ‘dry’ or ‘discarded’. hdry is a parameter that must be set in shared_mod.f95 and in
get_nbr_deg_freedom.m (hdry is typically 10−3 meters).

Note that the code uses static arrays and needs to know the value of ndeg (the total number
of ‘wet’ and ‘dry’ cells) prior to a calculation. One way to obtain ndeg is to use the function
get_nbr_deg_freedom.m with a raw topographic grid (see the test-cases for examples). As
an alternative to using get_nbr_deg_freedom.m, one can enter a dummy value for ndeg in
shared_mod.f95 and initiate the calculation. The code will immediately stop and return the
correct ndeg that should have been entered in shared_mod.f95.

E.3 Treatment of land boundaries
The conservation properties of most finite-difference methods tend to degrade rapidly when land
boundaries are introduced. Ketefian and Jacobson (2009) compare the accuracy of such schemes
in the context of the inviscid shallow-water equations. For an Arakawa-C grid, the difficulty lies
in extrapolating the relative vorticity ζ and the layer thickness h along the land boundaries while
(ideally) conserving volume, energy, vorticity and potential enstrophy. An important conclusion
from their study is that most schemes perform poorly in presence of realistic land masses. The
only one that conserves all these quantities (the so-called BVEM scheme) is complicated and
requires the solution of a prognostic equation for each ζ grid point located along a land boundary.

A simpler and reasonably accurate alternative to BVEM is named Free-Slip (FS). In this
scheme, ζ is simply set to to zero along land boundaries which is equivalent to imposing a free-
slip lateral boundary condition. The layer thickness h is extrapolated as a weighted average of
the neighbouring wet grid points (Ketefian and Jacobson, 2009, their Appendix B). These authors
show that the FS scheme performs nearly as well as the BVEM scheme. Similar conclusions
were obtained by Deremble et al. 2011 and Dupont et al. 2003. For all these reasons, I chose to
implement the FS scheme in beom. It is worth pointing out that Rutgers’ ROMS currently has a
hard-coded no-splip condition along interior land areas (see Utility/metrics.F), i.e. the opposite
of FS.
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Figure 22: Discretization of variables in horizontal space. White squares are wet cells (ocean)
and gray squares are land. Variables from white and light gray cells are indexed into a vector
while dark gray cells are discarded. Equations 27,30 are applied at white/light gray cells while
fluxes between white and gray cells are zero. Each cell has its η point at the center, u point on the
left, v point at the bottom, and ψ point on the lower-left corner. In cases with wetting-drying the
wet cells must be extended to include all potentially-flooded areas.

Appendix F Scalability

The overhead associated with the unstructured grid is partly mitigated by the scalability of the
code (i.e., its performance on multi-core computers). As an example, I will consider the case of a
closed rectangular basin 600×300 km with a uniform depth of 3,000 m and a 1 km resolution. The
domain is on a f -plane and the forcing is a constant 0.1 Pascal westerly wind applied at t = 0 (the
ocean is initially at rest). The computer is a multi-core workstation with gfortran version 4.7 as the
compiler. For the purpose of this test-case I use a high optimization -Ofast -march=native.
The real (wall-clock) duration of the calculation is presented as a function of model layers and
parallel threads. For example for a 6-core calculation under a C shell, one would type:
setenv OMP_NUM_THREADS 6

and under a bash shell this would become (note the = sign):
export OMP_NUM_THREADS=6

(type echo $SHELL to determine whether your workstation uses a C or a bash shell.)

Figure 23a illustrates the time T required for one day of simulation. The benchmark demon-
strates that a modest number of cores (12) suffice to maintain the run-time below an accept-
able level (15 minutes in this case). The runtime is linearly proportional to the number of layers
(Fig. 23b). The scalability of the code can be compared to a perfectly-parallel calculation defined
by:

T (N) = T (1)/N, S (N) = T (1)/T (N), (57)

where T is the wall-clock time for a fixed-size calculation, N the number of cores, and S the
speedup. Note that, even in the theoretical case of perfectly-parallel code, the time T (N) rapidly
reaches an asymptote (Amdahl’s law).

The model runtime is compared to the perfectly-parallel case in Fig. 23c,d. The model repro-
duces the expected 1/N decrease in run-time (Fig. 23c) but its scalability gradually decreases with
increasing N (Fig. 23d). This result is expected and is due to synchronization between threads at
the end of each parallel loop and to any serial operation present in the code. Further improvements
in speed would require a split scheme and/or a coarse-grain parallelization, both modifications
representing more work than I am willing to invest.

In a typical calculation the workload is dominated by the following five subrou-
tines: update_u and update_v (each representing ∼ 28% of the total runtime),
update_mont_rvor_pvor_dive_kine (∼ 19%), update_h (∼ 14%), and update_viscosity
(∼ 10%).
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Figure 23: Scalability and performance of the code in a realistic benchmark (see §F). T (N) is the
wall-clock time in minutes for a 1-day simulation and N is the number of cores used.

Appendix G Limitations of beom

G.1 Performance of the code

The code could be considerably faster if I were willing to make fundamental changes (e.g., aban-
don the unstructured grid geared toward estuarine domains) or if I were willing to introduce ad-
ditional approximations. Such major developments are, however, unlikely to happen. I consider
the code sufficiently fast when used within its intended niche (see ‘Frequently Asked Questions’)
and I would rather focus my attention on exploring new test-cases, improving the documentation,
and improving the existing code. This being said, you are more than welcome to download the
code and make major modifications to suit your needs. For example, a version of beom with a
rigid lid and longer timesteps exists (Zhao et al., 2019).

G.2 Conservation of potential enstrophy

As described in §E.1, the spatial discretization of qe3 × h u (the so-called EEN scheme of Madec,
2016) does not conserve potential enstrophy fully if the flow field includes divergence. In such a
case, the budget of potential enstrophy will include a very small residual that cannot be accounted
by physical processes. Discretization schemes that fully conserve potential enstrophy and energy
do exist (Ketefian and Jacobson, 2009; Arakawa and Lamb, 1981) but they are considerably more
cumbersome than the EEN scheme currently used (see §E.1) and make little sense in a ‘back of
envelope model’. Moreover, Arakawa and Hsu (1990) (in their §5) emphasize the advantages of
the EEN discretization in cases of isopycnal outcrops or wetting/drying (h→ 0, q→ ∞).

G.3 Momentum advection and numerical noise

The ‘vector invariant form’ of the Coriolis and momentum advection terms, −qe3×h u−∇hu ·u/2,
is widely used in shallow-water models and is the basis for the most conservative schemes cur-
rently available (Ketefian and Jacobson, 2009; Arakawa and Lamb, 1981). The drawback of such
schemes is that they generate grid-scale numerical noise that necessitates explicit viscosity (µ > 0,
Eq. 34) to remain under control. This explicit viscosity µ is larger than the molecular viscosity of
water (by orders of magnitude) and is typically justified as representing the contribution of unre-
solved (sub-grid scale) flow structures causing a forward energy cascade. Once a non-zero µ is
introduced, the numerical scheme is no longer conserving energy nor enstrophy, but the contribu-
tion of the explicit viscosity to the model’s solution and its budgets can be back-calculated exactly
assuming µ(x, y, z, t) is known (i.e., if this variable was included as part of the model outputs).
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The burden of specifying a suitable explicit viscosity led many modelers to develop numeri-
cal schemes with ‘built-in’ (implicit) viscosity and dissipation of energy/enstrophy, either within
the spatial discretization of the momentum equation (upwind/upstream bias) or its temporal dis-
cretization (e.g., Asselin filter). Examples of this include the flux-form semi-Lagrangian scheme
of Lin and Rood (1997) or an upwind-biased scheme in the flux-form momentum equation of
ROMS (Shchepetkin and McWilliams, 2005). Such schemes are inherently non-conservative for
energy and enstrophy, but this behavior is typically justified in the same way as an explicit vis-
cosity (i.e., sub-grid scale motions and a forward cascade). An advantage of the implicit viscosity
is that the user no longer needs to prescribe µ(x, y, z, t) (the necessary dissipation is built-in the
model equations). Additional constraints such as monotonicity can also be enforced within the
model code (a valuable feature when representing shock waves). However, quantifying the effect
and impact of such a ‘black box’ implicit viscosity on the model’s solution and its budgets is not
trivial. This is not a concern in an engineering context, but in a process-oriented study it limits
the explanatory power of the numerical model.

There are two forms of ‘implicit’ dissipation in beom. The ‘generalized’ forward-backward
scheme uses the suggested weights of Shchepetkin and McWilliams (2005) and is inherently dissi-
pative (§D). This dissipation can be de-activated be reverting to the standard ‘forward-backward’
scheme (g_fb = 0. in file shared_mod.f95). The second form of implicit dissipation is the
3rd-order upstream-bias used in the continuity equation (§E.1). This form of implicit dissipation
probably affects the enstrophy budget more than the energy budget and it is hard-coded in beom.
To de-activate it, one can comment the extra terms in Eq. 56 and recover a standard 2nd-order
centered formulation.

Appendix H Examples of usage

Ken Zhao published two nice studies using a customized version of beom with a rigid lid: Zhao
et al. (2019) and Zhao et al. (2021).

The folder testcases/natl10km/ contains the param_basin.txt file (i.e. the list of param-
eters to be entered inside shared_mod.f95) and the input files necessary to re-create the 10 km
North Atlantic subtropical gyre case portrayed on http://nordet.net/beom.html. The actual
outputs (≈ 25 gigabytes) are available upon request.

Appendix I Troubleshooting & Questions on general usage
1. I cannot reproduce the results of the test-cases.

First, verify that each and every parameter inside shared_mod.f95 is entered exactly as it
should be (this is the most common error). Also, make sure that the directory containing
the input files (variable idir inside file shared_mod.f95) is empty before you execute the
test-case m-file. The model will try to use all the input files present in this directory (even
those that are unrelated to current test-case) and so it is important to ‘clean’ the directory
prior to executing one of the m-files. If it still doesn’t work, please email me with a detailed
description of the problem and step-by-step intructions for me to reproduce the problem.

2. I get a Segmentation fault message when trying to use a moderate-to-large grid.
Operating systems often set a limit on the stack size to prevent potential runaway usage in
deeply recursive procedures (which are absent from beom). The default value is typically
very low and incompatible with model grids of size ndeg > 105, leading to an unexpected
Segmentation fault without any form of warning. See the documentation of your shell
(tcsh, bash, etc.) on how to read the current settings of your terminal session, and how to
change the stack size limit. For example in bash you can read the current value by typing:
ulimit -a

which on my laptop returns 8192 kbytes. I increase the stacksize by typing:
ulimit -s 262144

where 262144 is the new stacksize in kbytes (32 times the original value).
With tcsh, the syntax is a bit different. You read the current values by typing:
limit

and you set the new stacksize by typing:
limit stacksize 262144

3. My custom application (not a test-case) blows-up. What should I do?
The ‘restart’ mechanism of beom can be very useful to identify the origin of a crash (and then
use this information to devise a solution). In most crashes, one of the prognostic variables
will turn NaN at a given grid point at a given timestep. This NaN will then propagate to
neighboring grid cells at each timestep (because of horizontal derivatives), giving rise to a
steadily-expanding, diamond-shaped zone filled with NaNs. The frequency of the outputs
(parameter dt_o in file shared_mod.f95) is typically too poor to observe this growing
outbreak, and thus the outputs will appear to transition abruptly from ‘healthy’ to ‘completely
filled with NaNs’, making it nearly impossible to understand what is happening. This is
where the restart mechanism can be useful. As described in §B.2, the strategy is to delete
a few lines at the end of the output file time.txt in order to restart from a point when the
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model solution was deemed healthy. However, rather than using the same output frequency
as in the original calculation, the restarted calculation would use a smaller dt_o value, fine
enough to visualize where the NaNs first appear in the model domain and to identify which
model variables have suspicious values right before the first NaN appears. Once the user has
a reasonable interpretation of what went wrong, they can make additional changes in file
shared_mod.f95 (e.g., tweak the viscosity) and try again. This ‘restart’ procedure can be
repeated multiple times to improve the model parameters (with progress being measured by
how much farther the code goes before blowing up) and eventually completely prevent such
crashes from occurring.

4. Can I run a calculation for a long time without being logged on all the time?
Assuming the computer does not have a queuing system, look for the nohup command (man
nohup) which allows the calculation to run in the background without the need to be logged
on the system. On a workstation with a C shell, it can be as simple as:
nohup ./a.out >& log.txt & (under a bash shell, replace >& by >).

5. Can I break up a long calculation of multiple years into sequential calculations?
You can use the ‘restart’ mechanism of beom to do something like that (see §B.2). For
example, one can conduct a 8-year long run as four 2-year long runs (dt_s=730.). Once the
first 2-year segment is completed, you would open shared_mod.f95 in an editor, change
rsta from 0. to 1., recompile the code, and then start the calculation. The outputs from
the second 2-year segment will be appended to the existing output files from the first 2-year
segment, as if it were a continuous run.

6. The NetCDF4 file format offers data compression. Can we compress beom’s outputs in the
same way?
It is my understanding that NetCDF4 uses the same lossless compression algorithm as gzip
(LZ77; Ziv and Lempel 1977). Based on one test with a 3.8 gigabytes output file from beom,
gzip reduced the file size by 8%. This is not large enough to motivate the implementation
of data compression. I suspect the poor compression rate is a consequence that beom only
stores non-dry grid points inside its output files.

7. The scalability drops when I try to use more than x threads on my computer.
Make sure that the number of threads you are using (environment variable
OMP_NUM_THREADS) is equal or inferior to the number of physical cores available on your
computer. Intel and AMD provide additional virtual cores to the operating system through
technologies like ‘HyperThreading’. For example, my Intel laptop has two physical cores
but the operating system allows for up to four threads. Using the additional virtual cores

provides a slight improvement in runtime, but this improvement is well below the scalability
we observe on real physical cores. I typically set OMP_NUM_THREADS to match the number
of physical cores.

8. Velocities can be unrealistically large inside a region of outcrop.
The artificial term from Salmon (2002) depends on h−3

i (Eq. 45) and can generate large
transient velocities O

(︂
10 m s−1

)︂
while accomplishing its role of maintaining the thickness of

an outcropped layer to a uniform value O (hsal). While these high velocities are typically a
fraction of the surface gravity wave speed and therefore do not threaten the computational
stability, they are nevertheless artificial in nature and are not a part of the multilayer shallow-
water dynamics. When creating visualizations of |ui|, the artificial velocities can be masked
by multiplying the velocity by:

×max
[︄
1,

hi

10 hsal

]︄
, (58)

which will selectively mask the velocities within the outcropped regions.

9. I activated all the possible checks in gfortran and I am seeing warnings at compile time.
There are two types of warnings produced by gfortranwhen compiling with all the possible
checks activated. The first one is Warning: Array reference at...out of bounds

in loop beginning at.... This warning represents the compiler’s best attempt at iden-
tifying at compilation time what are possible out-of-bounds operation. What the compiler is
missing here is that each of these occurrences are wrapped inside a if() conditional that will
prevent the out-of-bound operation from occurring at run time. The second type of warning
is Array...at...is larger than limit set by -fmax-stack-var-size, moved
from stack to static storage. This warning represents the compiler identifying vari-
ables of constant bounds whose size exceeds an arbitrary limit (65 536 bytes by default).
The warning is avoided by setting fmax-stack-var-size to a larger value, or by invoking
-frecursive (which moves all arrays to the stack regardless of their size), or by invoking
-fopenmp (since -fopenmp implicitly includes -frecursive).

10. I activated all the possible checks in my compiler and I am seeing floating point exceptions
at run time.
Not all floating point exceptions are of equal concern. invalid, zero or overflow are
worth addressing and their presence can be considered a bug. However, other exceptions like
precision, inexact can arise from normal valid operations and therefore are not cause for
concern.

11. I think I encountered a bug.
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The code has been quality-controlled in multiple ways (test-cases with known analytical
solutions, running the code in a debugger) but bugs can always slip in. Please email me with
a description of the problem and step-by-step intructions for me to reproduce the problem.
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Appendix K Legal information
beom is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
beom is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General
Public License for more details.
A copy of the GNU General Public License is available in the text file COPYING.
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